APPENDIX 3C – DETAILS OF RECONSTRUCTION MODELING GAGE C – GILA RIVER, ARIZONA

This reconstruction uses just the earliest (M1) sub-period model, which has tree-ring data starting in A.D. 1200. The predictand for modeling is water-year average daily flow in units of log_{10} cms.

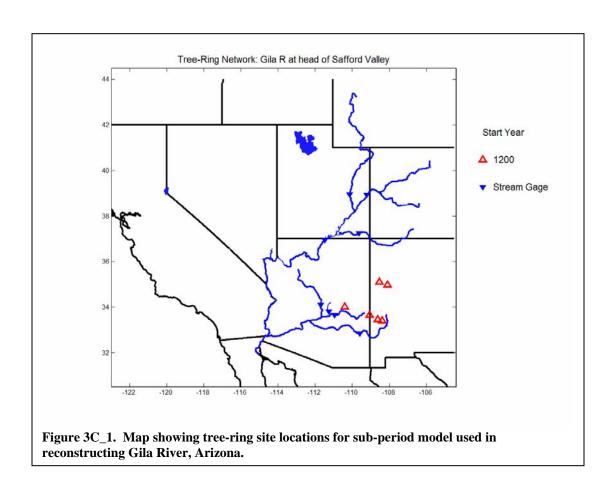


Figure 3C-2. Time series plots of observed and reconstructed flows for calibration period, Gila River, Arizona. Model R1200 allows reconstruction to A.D. 1200.

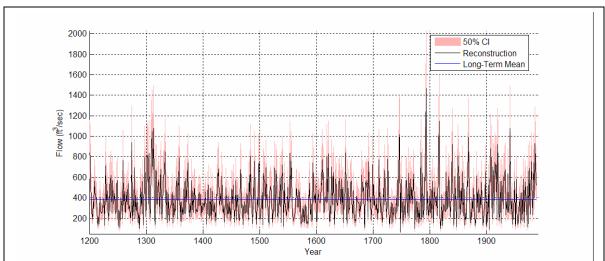


Figure 3C_3. Time series plot of reconstructed annual flows, Gila River, Arizona. Confidence interval based on root-mean-square error of cross-validation. Accuracy measured by root-mean-square error of cross-validation.

Table 3C_1. Summary of multi-site regression modeling for Gila River, Arizona.

	Calib	ration ³	Validation ⁴				
N ¹ Start ²	Years	n-p-q	R ² adj	m	RE	RMSE	
1* 1200 2 1672 3 1672	1915-1988 1915-1980 1915-1980	11-3-1	0.57	7	0.54	0.2092 0.2117 0.2101	

¹Sub-period model number (1 is earliest; * marks sub-period models actually used in final reconstruction)

Years=calibration period

n=number of chronologies

p=number of potential predictors

q=number of predictors in final model

 R^2 adj = adjusted coefficient of determination

⁴Validation statistics (cross-validation)

m = number of observations left out in "leave-m-out" cross-validation

RE = reduction of error statistic

RMSE = root-mean-square error of cross-validation (units of RMSE are same as units of the predictand in regression)

NOTES:

Predictand is log-transformed flow (log10 of the annual flow in cms)

Predictors = Principal components (covariance matrix) from PCA on full reconstruction + calibration period

Units of predictand in regression = log10(cms)

p-value of overall F for model < 1.0E-99

Table 3C_M1_1. Chronology listing and statistics on prewhitening, model M1200.

			LOCATION ⁵		TIME COVERAGE ⁶		AR ⁷		
${ m N}^{ m l}$ CHRONOLOGY ²	FILE ³ SPE	ECIES ⁴	LAT	LON	EL(M)	START	END	р	var
1 Central Moun 2 Reserve 3 Cebolleta Me 4 El Malpais	swarchy swarchy ad1000s ad1000s	MANY many many PSME	34.0 33.5 35.1 35.0	-110.4 -108.6 -108.6 -108.1	1875 3017 2114 2423	1066(1066) 533(533) 1000(1000) 1000(877)	1988 1988		0.5 0.0 14.3 11.3
5 Mount Graham 6 Black Mounta	ad1000s bkm	many	33.6 33.4	-109.1 -108.4	2950 2710	1000(1162) 1196(1196)	1988	3	15.2 11.2

¹sequential site number

²Start year of reconstruction period

³Calibration statistics:

²short form of chronology name

³computer file (.crn) identifying chronology in ITRDB and elsewhere (e.g., ca528.crn is unique file at International Tree-Ring Data Bank). File "ad1000s" are chronologies from Ni et al. (2002).

⁴species code(see Appendix 2)

⁵latitude and longitude in decimal degrees; elevation in meters above sea level; N/A indicates information not available

⁶first year of standard chronology (first year sub-sample signal strength - see text -- exceeds 0.85); last year of chronology; N/A means not available

⁷order of autoregressive model used to prewhiten chronology, and percent chronology variance due to modeled autocorrelation

Table 3C_M1_2. Summary of single-site regression/reconstruction, model M1200.

		REC	RESSIC		RE ⁴		
N^1	CHRONOLOGY ²	LAGS	R ²	F	A	В	
1	Central Moun	0,-1	0.39	45.4***	0.42	0.37	
2	Reserve	0	0.46	59.4***	0.44	0.47	
3	Cebolleta Me	0,-1	0.46	30.5***	0.42	0.50	
4	El Malpais	0,-1	0.36	40.6***	0.30	0.43	
5	Mount Graham	0,-1	0.51	36.9***	0.47	0.59	
6	Black Mounta	0,-1	0.47	32.2***	0.50	0.48	
1							

¹sequential site number

LAGS = lags included on predictors

 R^2 = variance explained by regression, adjusted

F = F-level and significance (*, **, *** indicate 0.05,

0.01 and 0.001 alpha-levels)

⁴Reduction of error statistic for split-sample validation;

A = validation on second half of data (calibration on first)

B = validation on first half of data (calibration on second)

Table 3C_M1_3. Summary of stepwise estimation of multi-site reconstruction, model M1200.

		RE	Statis	R	Residuals ⁴				
Step Variables ¹	R^2adj	А	В	cv	RMSEcv ³	r_1	Т	N	
1 1	0.59	0.54	0.61	0.56	0.2092	P	0	P	

¹Variables included as predictors in the model at the indicated step. Variables are principal components (covariance matrix) from PCA on full period of reconstruction and calibration. Variable 1 is PC#1, variable 2 is PC#2, and so forth.

²Reduction of error statistics from (A) calibration on 1915-1951 and validation on 1952-1988, (B) calibraton on 1952-1988 and validation on 1915-1951,(cv)cross-validation with 3 observations left out at each iteration

³Root-mean-square error of cross-validation, in log10(cms)

 4 Results of analysis of residuals: r_1 is Durbin-Watson(DW) test for first-order autocorrelation of residuals; T is test for significant slope in regression of residuals on time (trend); N is Lilliefors test for normality of residuals; "P" for DW and N tests indicates "pass", or test statistic not significant at 0.05 alphalevel; 0 indicates slope of trend line not significant at 0.05 level, while - or + indicates significant negative or positive trend in residuals

Model Equation: constant term, coefficients, confidence interval, selected statistics:

Var Coef 95% CI Con 0.9877 (0.9399 1.0355) X1 0.53669 (0.43077 0.64261)

R-squared = 0.58627

F-level = 102.0275

sig <1.0 E-99

²chronology name (truncated)

³regression modeling specifications and statistics:

Table 3C_M1_4. Weights¹ of chronologies in principal components and final regression.

	LOADINGS									
N	CHRONOLOGY	X1	W	W*						
1	Central Moun	0.398	0.1335	0.76						
2	Reserve	0.405	0.1464	0.83						
3	Cebolleta Me	0.478	0.1758	1.00						
4	El Malpais	0.325	0.1055	0.60						
5	Mount Graham	0.399	0.1531	0.87						
6	Black Mounta	0.429	0.1589	0.90						

¹Columns X1, X2,... are the principal component loadings on the chronologies. X1 denotes PC1, X2 denotes PC1, and so forth. Final, or multi-site, reconstruction was generated by regression of flow on the PC scores. The final reconstruction can be generated by applying the estimated regression equation to those PC scores. The final reconstruction can alternatively be generated from the individual filtered, scaled chronologies themselves. To generate the final from the chronologies, the applicable weights are in column "W". ("W*" are the same weights proportionally scaled so that the largest weight is 1.0.) The weights W and W* measure the relative importance of the individual chronologies to the final reconstruction. Steps for generating reconstruction from original chronologies:

- 1) filter and scale the original chronologies into single-site (ss) reconstructions as described in the text
- 2) convert ss reconstructions to Z scores, using calibration period means and standard deviations
- 3) multiply those z-score series by the regression weights in next-to-last column (W) above, and sum the weighted series
- 4) multiply resulting series by calibration-period standard deviation of flow and add the calibration-period mean observed flow