APPENDIX 3D – DETAILS OF RECONSTRUCTION MODELING GAGE D – GREEN RIVER AT GREEEN RIVER, UTAH

This reconstruction uses two sub-period models (M1 and M2), with data starting in A.D. 1196 and A.D. 1513. The predictand for modeling is water-year average daily flow in units of cms.

Figure 3D_3. Time series plot of reconstructed annual flows, Green River at Green River, Utah. Confidence interval based on root-mean-square error of cross-validation. Reconstruction for given interval of time based on the most accurate sub-period reconstruction available for that period. Accuracy measured by root-mean-square error of cross-validation.

Table 3D_1. Summary of multi-site regression modeling for Green River at Green River, Utah.

		Calib	ration ³	Validation ⁴				
N1	Start ²	Years	n-p-q	R ² adj	m	RE	RMSE	
1* 2* 3	1196 1513 1513	1906-1964 1906-1964 1906-1964	4-4-1 22-4-1 22-4-1	0.42 0.63 0.63	 7 9 9	0.37 0.58 0.58	48.9308 39.7378 39.7378	

¹Sub-period model number (1 is earliest; * marks sub-period models actually used in final reconstruction) ²Start year of reconstruction period ³Calibration statistics: Years=calibration period n=number of chronologies

p=number of potential predictors
q=number of predictors in final model
R²adj = adjusted coefficient of determination
⁴Validation statistics (cross-validation)
m = number of observations left out in "leave-m-out" cross-validation
RE = reduction of error statistic
RMSE = root-mean-square error of cross-validation (units of RMSE are same as units of
the predictand in regression)

NOTES:

Predictand is flow (not transformed)
Predictors = Principal components (covariance matrix) from PCA on full reconstruction +
 calibration period
Units of predictand in regression = cms
Maximum p-value of overall F for any model = 2.607359E-0083

Table 3D_M1_1. Chronology listing and statistics on prewhitening, model M1196.

				LOCATI	 ⊃N⁵	TIME COVERAGE ⁶			AR ⁷
N ¹ CHRONOLOGY ²	FILE ³ S	PECIES ⁴	LAT	LON	EL(M)	START	END	p	var
1 Eagle 2 Desert Peak 3 Nine Mile Ca 4 Wild Horse R	co052 deseret ut505 UT508	PSME PSME PSME PILO	39.6 40.5 39.8 39.4	-106.9 -112.6 -110.3 -111.1	1951 -9999 1920 -9999	1107(1404) 1185(1185) 1194(1232) 286(286)	1964 1986 1964 1985	3 3 2 3	37.9 42.7 20.3 18.7

¹sequential site number

²short form of chronology name

³computer file (.crn) identifying chronology in ITRDB and elsewhere (e.g., ca528.crn is unique file at International Tree-Ring Data Bank). File "adl000s" are chronologies from Ni et al. (2002).

⁴species code(see Appendix 2)

⁵latitude and longitude in decimal degrees; elevation in meters above sea level; N/A indicates information not available

⁶first year of standard chronology (first year sub-sample signal strength - see text -exceeds 0.85); last year of chronology; N/A means not available

⁷order of autoregressive model used to prewhiten chronology, and percent chronology variance due to modeled autocorrelation

Table	3D_M1_	_2.	Summary of	i single-site	regression	/reconstruction,	model	M1196.
-------	--------	-----	------------	---------------	------------	------------------	-------	--------

		RE ⁴		
Ν	¹ CHRONOLOGY ²	LAGS	R ² F	A B
1 2 3 4	Eagle Desert Peak Nine Mile Ca Wild Horse R	0 0 0,-2,-3	0.29 22.5*** 0.12 10.2** 0.20 14.0*** 0.19 9.4***	0.44 0.09 0.15 0.09 0.23 0.25 0.15 0.26

¹sequential site number

²chronology name (truncated)

³regression modeling specifications and statistics:

LAGS = lags included on predictors

 R^2 = variance explained by regression, adjusted

F = F-level and significance (*, **, *** indicate 0.05,

0.01 and 0.001 alpha-levels)

⁴Reduction of error statistic for split-sample validation;

A = validation on second half of data (calibration on first)

B = validation on first half of data (calibration on second)

Table 3D_M1_3. Summary of stepwise estimation of multi-site reconstruction model M1196.

			RE S	Statisti	Lc ²		Residua	ls4
Step	Variables ¹	R ² adj	 А	В	cv	RMSEcv ³	r ₁ T	N
1	1	0.42	0.30	0.39	0.37	48.9308	P –	P

¹Variables included as predictors in the model at the indicated step. Variables are principal components (covariance matrix) from PCA on full period of reconstruction and calibration. Variable 1 is PC#1, variable 2 is PC#2, and so forth.

²Reduction of error statistics from (A) calibration on 1906-1934 and validation on 1935-1964, (B) calibraton on 1935-1964 and validation on 1906-1934, (cv)cross-validation with 7 observations left out at each iteration

³Root-mean-square error of cross-validation, in cms

⁴Results of analysis of residuals: r₁ is Durbin-Watson(DW) test for first-order autocorrelation of residuals; T is test for significant slope in regression of residuals on time (trend); N is Lilliefors test for normality of residuals; "P" for DW and N tests indicates "pass", or test statistic not significant at 0.05 alphalevel; 0 indicates slope of trend line not significant at 0.05 level, while - or + indicates significant negative or positive trend in residuals

Model Equation: constant term, coefficients, confidence interval, selected statistics:

Var	Coef	95% CI	
Con	193.8285	(180.1786	207.4784)
X1	1.018138	(0.7020567	1.334218)

R-squared = 0.42194 F-level = 41.6051 sig = 2.607359E-0089

Table 3A_M1_4. Weights¹ of chronologies in principal components and final regression.

LOADINGS

_	_	_	_	

Ν	CHRONOLOGY	X1	W	W*
1	Eagle	0.711	0.3867	1.00
2	Desert Peak	0.249	0.0883	0.23
3	Nine Mile Ca	0.499	0.2269	0.59
4	Wild Horse R	0.428	0.2031	0.53

- ¹Columns X1, X2,... are the principal component loadings on the chronologies. X1 denotes PC1, X2 denotes PC1, and so forth. Final, or multi-site, reconstruction was generated by regression of flow on the PC scores. The final reconstruction can be generated by applying the estimated regression equation to those PC scores. The final reconstruction can alternatively be generated from the individual filtered, scaled chronologies themselves. To generate the final from the chronologies, the applicable weights are in column "W". ("W*" are the same weights proportionally scaled so that the largest weight is 1.0.) The weights W and W* measure the relative importance of the individual chronologies to the final reconstruction. Steps for generating reconstruction from original chronologies:
 - 1) filter and scale the original chronologies into single-site (ss) reconstructions as described in the text
 - 2) convert ss reconstructions to ${\tt Z}$ scores, using calibration period means and standard deviations
 - 3) multiply those z-score series by the regression weights in next-to-last column (W) above, and sum the weighted series
 - 4) multiply resulting series by calibration-period standard deviation of flow and add the calibration-period mean observed flow

Table 3D_M2_1. Chronology listing and statistics on prewhitening, model M1513.

				LOCATION ⁵			TIME COVERA	GE ⁶	A	R ⁷
\mathbb{N}^{1}	CHRONOLOGY ²	FILE ³	SPECIES ⁴	LAT	LON	EL(M)	START	END	p	var
1	New North Pa	co050	PSME	40.9	-106.3	2469	1354(1650)	1964	3	27.8
2	Eagle	co052	PSME	39.6	-106.9	1951	1107(1404)	1964	3	37.9
3	Eagle East	co063	PIED	39.7	-106.7	2164	1314(1403)	1964	3	16.5
4	Pumphouse	CO579	PIED	40.0	-106.5	-9999	1320(1379)	1999	2	21.6
5	Desert Peak	deseret	PSME	40.5	-112.6	-9999	1185(1185)	1986	3	42.7
б	Mt Naomi	mtnaomi	PSME	41.9	-111.7	-9999	1312(1312)	1986	3	32.9
7	Mt Raymond,	raymond	PSME	40.6	-111.8	-9999	1473(1473)	1986	2	34.5
8	South of Pea	speak78	PSME	41.5	-112.0	-9999	1429(1429)	1990	3	24.5
9	Uinta Mounta	ut013	PCEN	40.8	-110.0	3353	1433(1584)	1971	3	52.5
10	Uinta Mounta	ut502	PIED	40.6	-110.0	2289	1423(1423)	1971	2	24.7
11	Nine Mile Ca	ut505	PSME	39.8	-110.3	1920	1194(1232)	1964	2	20.3
12	Wild Horse R	UT508	PILO	39.4	-111.1	-9999	286(286)	1985	3	18.7
13	Uhl Hill	wy001	PIFL	43.8	-110.5	2225	1400(1400)	1971	3	48.3
14	Wind River M	wy002	PIFL	43.1	-110.1	2500	1492(1577)	1972	3	27.7
15	Gros Ventre	wy008	PIFL	43.6	-110.5	2179	1462(1462)	1971	2	27.2
16	Laramie, Sit	WY010	PSME	41.1	-106.1	-9999	1444(1444)	1964	3	22.0
17	Elbow Campgr	WY013	PSME	43.2	-110.8	-9999	1490(1490)	1965	3	35.1
18	Pedro Mounta	WY016	PIFL	42.4	-106.8	-9999	1508(1508)	1964	3	19.7
19	Sheep Mounta	WY019	PSME	41.1	-106.1	-9999	1412(1412)	1990	3	10.9
20	Medicine Bow	WY020	PCEN	41.4	-106.3	-9999	1421(1421)	1990	3	62.4
21	Fossil Butte	WY026	PIFL	41.9	-110.8	-9999	1480(1480)	1998	2	26.4
22	Whiskey Moun	WY028	PSME	43.4	-109.6	-9999	1459(1459)	2000	2	14.1

¹sequential site number

²short form of chronology name

³computer file (.crn) identifying chronology in ITRDB and elsewhere (e.g., ca528.crn is unique file at International Tree-Ring Data Bank). File "adl000s" are chronologies from Ni et al. (2002).

⁴species code(see key on Appendix 2)

⁵latitude and longitude in decimal degrees; elevation in meters above sea level; N/A indicates information not available

⁶first year of standard chronology (first year sub-sample signal strength -- see text -exceeds 0.85), last year of chronology; N/A indicated information not available ⁷order of autoregressive model used to prewhiten chronology, and percent chronology

variance due to modeled autocorrelation

		REGRESS	SION MO	DEL ³	RI	\mathbb{S}^4
\mathbb{N}^1	CHRONOLOGY ²	LAGS	R ²	 F	А	В
1 2	New North Pa Eagle	0 0	0.10	6.0* 22.5***	0.08	0.11
3 4 5	Eagle East Pumphouse Desert Peak	0,-1 0,-1 0	$0.46 \\ 0.44 \\ 0.12$	24.0*** 36.0*** 10.2**	0.55 0.39 0.15	0.52
6 7	Mt Naomi Mt Raymond,	1 0,1	0.19	18.0*** 9.3**	0.07	0.44
8 9	South of Pea Uinta Mounta	0,-2,1 0	0.20	7.5*** 6.3*	0.11 0.28	0.39 0.00
10 11 12	Uinta Mounta Nine Mile Ca Wild Horgo B	0 0 0 - 2 - 3	0.36 0.20	35.9*** 14.0***	0.46 0.23	0.26
12 13 14	Wild Holse K Uhl Hill Wind River M	0,-2,-3	0.07	4.9* 6.8*	0.15 0.16 0.11	0.01
15 16	Gros Ventre Laramie, Sit	0 0,-1	0.09 0.21	6.3* 8.1***	0.12 0.16	0.08 0.24
17 18	Elbow Campgr Pedro Mounta	1 -2	0.07	4.4* 8.1**	0.08	0.05
19 20 21	Medicine Bow Fossil Butte	0,-1,1 1 0,-2	0.32 0.11 0.15	20.0*** 10.4** 15.7***	0.30 0.01 0.11	0.37 0.25 0.17
22	Whiskey Moun	0,-1	0.07	7.3**	0.02	0.14

Table 3D_M2_2. Summary of single-site regression/reconstruction, model M1513

¹sequential site number

²chronology name (truncated)

³regression modeling specifications and statistics: LAGS = lags included on predictors

 R^2 = variance explained by regression, adjusted

F = F-level and significance (*, **, *** indicate 0.05,

0.01 and 0.001 alpha-levels)

⁴Reduction of error statistic for split sample validation; A = validation on second half of data (calibration on first) B = validation on first half of data (calibration on second)

Table	3D_M2_3.	Summary	of	stepwise	estimation	of	multi-site	reconstruction,
model	M1513.							

			RE Statistic ²					
Step	$Variables^1$	$R^{2}adj$	A	В	CV	RMSEcv ³	r ₁ T	N
1	1	0.63	0.57	0.60	0.58	39.7378	P -	P

¹Variables included as predictors in the model at the indicated step. Variables are principal components (covariance matrix) from PCA on full period of reconstruction and calibration. Variable 1 is PC#1, variable 2 is PC#2, and so forth.

²Reduction of error statistics from (A) calibration on 1906-1934 and validation on 1935-1963, (B) calibraton on 1935-1963 and validation on 1906-1934, (cv) cross-validation with 9 observations left out at each iteration

³Root-mean-square error of cross-validation, in cms

⁴Results of analysis of residuals: r₁ is Durbin-Watson (DW) test for first-order autocorrelation of residual; T is test for significant slope in regression of residuals on time (trend); N is Lilliefors test for normality of residuals; "P" for DW and N test indicates "pass", or test statistic not significant at 0.05 alphalevel; 0 indicates slope of trend line not significant at 0.05 level, while - or + indicates significant negative or positive trend in residuals

Model Equation: constant term, coefficients, confidence interval, selected statistics:

Var	Coef	95% CI						
Con	200.5488	(190.3815	210.716)					
X1	-0.6692078	(-0.8047193	-0.5336963)					
R-squared = 0.63176								
F-level = 97.7912								
	sig = 5.651	035E-0149						

	LOADINGS					
Nl	CHRONOLOGY	X1	X2	W	W*	
1	New North Pa	-0.128	0.0272	0.12		
2	Eagle	-0.260	0.0928	0.39		
3	Eagle East	-0.517	0.2356	1.00		
4	Pumphouse	-0.538	0.2291	0.97		
5	Desert Peak	-0.093	0.0216	0.09		
б	Mt Naomi	-0.054	0.0145	0.06		
7	Mt Raymond,	-0.073	0.0135	0.06		
8	South of Pea	-0.095	0.0300	0.13		
9	Uinta Mounta	-0.032	0.0063	0.03		
10	Uinta Mounta	-0.284	0.1120	0.48		
11	Nine Mile Ca	-0.172	0.0513	0.22		
12	Wild Horse R	-0.134	0.0419	0.18		
13	Uhl Hill	-0.069	0.0123	0.05		
14	Wind River M	-0.113	0.0229	0.10		
15	Gros Ventre	-0.085	0.0172	0.07		
16	Laramie, Sit	-0.233	0.0742	0.31		
17	Elbow Campgr	-0.008	0.0015	0.01		
18	Pedro Mounta	0.002	-0.0004	-0.00		
19	Sheep Mounta	-0.301	0.1151	0.49		
20	Medicine Bow	-0.058	0.0119	0.05		
21	Fossil Butte	-0.158	0.0403	0.17		
22	Whiskey Moun	-0.070	0.0132	0.06		

Table 3D_M2_4. Weights¹ of chronologies in principal components and final regression.

- ¹Columns X1, X2,... are the principal component loadings on the chronologies. X1 denotes PC1, X2 denotes PC1, and so forth. Final, or multi-site, reconstruction was generated by regression of flow on the PC scores. The final reconstruction can be generated by applying the estimated regression equation to those PC scores. The final reconstruction can alternatively be generated from the individual filtered, scaled chronologies themselves. To generate the final from the chronologies, the applicable weights are in column "W". ("W*" are the same weights proportionally scaled so that the largest weight is 1.0.) The weights W and W* measure the relative importance of the individual chronologies to the final reconstruction. Steps for generating reconstruction from original chronologies:
 - 1) filter and scale the original chronologies into single-site (ss) reconstructions as described in the text
 - 2) convert ss reconstructions to Z scores, using calibration period means and standard deviations
 - 3) multiply those z-score series by the regression weights in next-to-last column (W) above, and sum the weighted series
 - 4) multiply resulting series by calibration-period standard deviation of flow and add the calibration-period mean observed flow