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APPENDIX 4 – RECONSTRUCTION METHOD  
 
This appendix lists steps by which the set of residual tree-ring chronologies described in 
Appendix 3 were converted into a reconstruction of flow.  The objective was a reconstructed time 
series of water-year flow for the sum of the Salt, Verde and Tonto rivers.  After a certain step, the 
reconstruction procedure becomes repetitive, and is repeated for three different sub-periods of the 
tree-ring record.  Much more detailed information, restricted for brevity to one of the sub-periods 
(1451-1982 model) is given in the pdf file recon_method.pdf, a manuscript in preparation 
for submission to a journal.   
 
1. Residual tree-ring chronologies for the 25 sites were organized in a time series matrix.  The 

starting point for the procedure is this time series matrix and the single time series of water-
year flows for the sum of the Salt, Verde and Tonto rivers  (SVT).  This series is referred to 
as “flow” in the remainder of this appendix.  The flow series covers water years 1914-2007.  
The tree-ring matrix covers years 1100-2005, though time coverage varies by tree-ring 
chronology.  
 

2. Each chronology was filtered and scaled into a single-site reconstruction (SSR) of sum of 
water-year total flow by the following steps: 
 

a. Flow was regressed on the tree-ring chronology and its lagged values (±2 yr) by 
robust regression using the Huber weighting function to de-emphasize outliers 
(Montgomery 1990).  The calibration period for the regression included the full 
overlap of the chronology with flow.  The predictors were either the chronologies 
themselves or the squared chronologies (quadratic model) where appropriate to adapt 
to possible curvilinear relationships between tree-ring index and flow.  The single-
site regressions themselves were done in two steps, first estimating a non-lagged 
model and then entering lags as deemed appropriate in a stepwise procedure. Lags 
were entered only if they resulted in improved skill of prediction when the model was 
validated with split-sample validation and cross-validation, and only up to a possible 
lag of ±2 years from the year (water year) of flow.  How many and which lags were 
allowed to enter was guided by cross-validation (leave-9-out) (Meko 1997) to ensure 
that a lag entered only  if it resulted in improved prediction accuracy on data not used 
to fit the model.   
 

b. The long-term record of tree-ring index was substituted into the regression equation 
to generate the SSR of flow. 
 

3. The 25 single-site reconstructions (SSRs) were reduced to 21 by dropping chronologies 
whose flow signal was insignificant (overall F of regression at α=0.05) or unstable when the 
model was tested with split-sample calibration/validation (Snee 1977). 
 

4. The resulting 21 filtered and scaled chronologies, or SSRs, were organized in a time series 
matrix. 
 

5. A series of exploratory regressions was run to identify subsets of chronologies that would 
yield strong flow reconstructions with 1) maximum length, 2) maximum accuracy, and 3) up-
to-date time coverage.  This analysis identified three sub-periods --1330-1989, 1451-1982, 
and 1736-2005 – for development of reconstruction models.    
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6. Reconstructed flows for each sub-period were then generated by the following steps: 
 

a. Those SSRs with no missing data in the sub-period were assembled in a time-series 
matrix 
 

b. A principal components analysis (Mardia et al. 1979) was run on the covariance 
matrix of the SSRs 
 

c. The scores of the first principal component (PC1) were extracted as a new tree-ring 
predictor.  This score series is alternatively a linear combination of the SSRs and a 
weighted time series of filtered and scaled chronologies.  
 

d. Observed flows were plotted against the scores of PC1 in a scatterplot.  This 
scatterplot is of course restricted to the overlapping period of PC1 and flows (e.g., 
1451-1982) for the middle of the three sub-periods. 
 

e.  Locally weighted regression (loess) is used to smooth the scatterplot (Cleveland 
1979).  The locally weighted regression was fit to the set of target points along the 
PC1 axis at the minimum, maximum and percentiles 5, 10, 15, …, 95 of the scores.  
At each of these points a neighborhood was defined based on a specified loess 
smoothing parameter, α.  By trial-and-error, we found 0.6α = as a suitable setting.  
The tri-cube weighting function (Martinez and Martinez 2005) was used to down-
weight points according to increasing distance from target point along the axis of 
PC1 scores.  The loess estimates of flow at the target points of PC1 scores were 
joined by straight lines.  This is the loess curve, or the smoothed scatterplot. 
 

f. To accommodate long-term reconstruction from the tree-ring data, the loess curve 
was linearly extended to the extremes (low and high) of PC1 scores in the tree-ring 
record.  This was done simply by extending the straight line between the 5th 
percentile and the minimum to the left, and the straight line between the 95th 
percentile and the maximum to the right on the scatterplot 
 

g. Flows corresponding to PC1 scores from the long-term tree-ring record were linearly 
interpolated from the loess-smoothed scatterplot. 
 
 
 
 

7. Because for a given sub-period model the variance of reconstruction errors (observed flows 
minus predicted flows using the loess plot) clearly increased toward higher predicted flows, 
an ad-hoc method was adopted to assign confidence bands to the reconstruction.  This method 
is described in detail elsewhere (see  recon_method.pdf.  The main idea is that the 
appropriate error distribution for setting error bars for any reconstructed flow should rely 
mainly on errors for similar levels of reconstructed flow in the calibration period.  The first 
step was to use cross-validation to generate calibration-period errors not biased low by tuning 
of the loess plot.  We used a leave-9-out strategy for this cross-validation:  1) 9 sequential 
observations were left out, 2) the loess plot was re-estimated using the remaining data, 3) the 
loess plot was used to estimated the flow for the central of the left-out observations, and 4) 
the process 1-3 was repeated until a complete time series of “deleted residuals” was 
generated.  (Note that for the first 4 and last 4 observations it was necessary to leave out 
fewer than 9 observations.)  The cross-validation residuals were then re-samples using 
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weighted bootstrapping to estimated a confidence interval for any reconstructed flow of the 
long-term record.  If this flow is denoted as ŷ and the deleted residuals are ( )ie , the process is 

as follows: 
 

a. Find the subset of residuals ( )ie for the nα reconstructed flows of the calibration 

period nearest ŷ in size, where n is the number of observations in the calibration 
period (the data for the scatterplot), and α=0.6.  Essentially this means the cross-
validation errors for the 60% of the calibration-period reconstructed flows nearest ŷ .   

b. Re-sample that subset of residuals using weighted re-sampling to generate a sample 
of 1000 residuals.  The bi-square function (Martinez and Martineez 2005) was used 
as weighting function.   

c. Add each of these simulated residuals to ŷ to get 1000 noise-added, or plausible 
“true” flows for the reconstruction year.   

d. Use the empirical cumulative distribution function (cdf) of those noise-added flows 
to assign the confidence interval for ŷ .  For example, the 0.10 and 0.90 probability 
points of the cdf define an 80 percent confidence interval.  
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