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I Introduction
Flooding is one of the most pervasive natural
hazards to impact negatively upon the
activities of human beings, and requires
various responses including construction

(downstream flood defences), forecasting
(for warning and evacuation), and land-use
management (upstream catchment-scale
changes of land use and runoff characteris-
tics). To some degree, all of these require
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Abstract: Flood frequency analysis (FFA) is a form of risk analysis, yet a risk analysis of the
activity of FFA itself is rarely undertaken. The recent literature of FFA has been characterized 
by: (1) a proliferation of mathematical models, lacking theoretical hydrologic justification, but used
to extrapolate the return periods of floods beyond the gauged record; (2) official mandating of
particular models, which has resulted in (3) research focused on increasingly reductionist and
statistically sophisticated procedures for parameter fitting to these models from the limited gauged
data. These trends have evolved to such a refined state that FFA may be approaching the ‘limits
of splitting’; at the very least, the emphasis was shifted early in the history of FFA from predicting
and explaining extreme flood events to the more soluble issue of fitting distributions to the bulk of
the data. However, recent evidence indicates that the very modelling basis itself may be ripe for
revision. Self-similar (power law) models are not only analytically simpler than conventional
models, but they also offer a plausible theoretical basis in complexity theory. Of most significance,
however, is the empirical evidence for self-similarity in flood behaviour. Self-similarity is difficult to
detect in gauged records of limited length; however, one positive aspect of the application of
statistics to FFA has been the refinement of techniques for the incorporation of historical and
palaeoflood data. It is these data types, even over modest timescales such as 100 years, which offer
the best promise for testing alternative models of extreme flood behaviour across a wider range of
basins. At stake is the accurate estimation of flood magnitude, used widely for design purposes: the
power law model produces far more conservative estimates of return period of large floods
compared to conventional models, and deserves closer study.
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hazard or risk assessment in the form of a
flood frequency analysis (FFA) (Dunne and
Leopold, 1978). This is traditionally most
evident in the design of major engineering
structures such as dams, flood embankments
and bridges, where the accuracy of these
methods has a profound significance for
economic investment (Yixing et al., 1987). It
is common for a ‘standard of service’ to be
defined for a flood defence structure, which is
often to provide protection against an event
with a specified return period, such as the
100-year flood. Since discharge data for most
catchments have been collected for periods
of time significantly less than 100 years, the
estimation of the ‘design discharge’ (design
stage, or water level) necessarily requires a
degree of extrapolation, which in turn
demands curve-fitting to the existing data.

All methods of FFA are thus methods of
extrapolation. Extrapolation requires the
fitting of a model, and here a limitation of FFA
is apparent: the fitting of any model requires
an a priori assumption about the underlying
distribution generating flood events. Not only
is this not known for extreme hydrological
events beyond the observed record, but it is
untestable within human timescales (Klemes,
1989). Yet, a model must be fitted, if
predictions are to be made. The literature is
dominated by one particular approach to
modelling: the use of a range of more-or-less
skewed, relatively complex, and often theo-
retically unjustified probability distributions,
whose parameters are estimated from the
data in the observational record. However, a
recent alternative has been to examine the
use of simple power law (PL) models which
carry theoretical implications about self-
similarity in the distribution of flood magni-
tudes (Malamud and Turcotte, 1999). 

There are, however, some additional tools
for effectively extending the instrumented
gauging record. These include (1) using phys-
ically based models including rainfall-runoff
modelling in continuous simulation mode
(Beven, 1987); (2) combining data from
several gauges in a regionalization exercise

(GREHYS, 1996) and (3) incorporating
historical and palaeoflood information into the
instrumented record (House et al., 2002;
Baker, 2003). This review will focus on the
implications of the third of these methods,
and in particular will consider the use of
historical and palaeoflood data and its implica-
tions for the two strategies of curve-fitting
noted above. The more recent use of PL
distributions has in part been justified when
pre-instrumental flood evidence suggests that
the most extreme events are outliers relative
to the conventionally fitted curves.

II The mechanics of flood 
frequency analysis
FFA model fitting involves three main steps:
data choice, model choice and a parameter
estimation procedure (Bobee, 1999). These
intricacies are discussed here for two rea-
sons: (1) to illustrate the proliferation of
techniques at each step, and (2) in order to
highlight the uncertainty consequences of
reliance upon any one technique at each step.
Yen 2002: proposes a very useful scheme in
which to consider uncertainty (Table 1). In
this scheme, the modelling process is pre-
sented as a hierarchy. Progression along the
modelling process entails assumptions at each
step of the process, and each of these steps
thus has the capacity to introduce error. If
unquantified, this error may cascade down

Table 1 Yen’s (2002) hierarchical
uncertainty scheme

Uncertainty Sensitive to
type

1 Natural Nonstationary 
uncertainty conditions

2 Model uncertainty Choice of model
3 Parameter Fitting technique; 

uncertainty goodness-of-fit test
4 Data uncertainty Data choice; accuracy of 

observed/gauged data
5 Operational Human 

uncertainty errors/decisions
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into the model predictions; this can have dire
consequences in the case of FFA. Awareness
of these issues is not often demonstrated
in the FFA literature; yet, challenging some
of these assumptions represents the best
opportunity for advancement of the science
of FFA. This paper addresses points (2)–(4) of
Yen’s scheme.

1 Data choice 
Classically, FFA is performed on the series of
annual maximum discharge values recorded
at a specific river gauging section. However,
an alternative is to use a form of partial series,
the most common being the peaks over
threshold (POT) method (Hosking and
Wallis, 1987), where every event over a given
threshold is included in the analysis (Figure 1).
POT is now a cornerstone technique for the
incorporation of historical and palaeoflood

data, since it offers inclusion of the continu-
ous instrumented gauged record and the dis-
crete historic data within the same modelling
framework. However, in conventional FFA, it
is common practice to apply both methods in
order to determine the difference that data
choice decisions make for prediction. In par-
ticular, it is known that results are sensitive to
choice of threshold (e.g., Adamowski et al.,
1998; Tanaka and Takara, 2002), with greater
confidence when the threshold is close to the
discharge for which a return period estimate is
required (Hosking and Wallis, 1986a). Where
it is possible, a reliable scheme of investigation
would include a range of thresholds in order
to determine this sensitivity.

2 Model choice I 
A limited number of models have traditionally
been employed in the analysis of flood peak

Figure 1 A partial duration series (PDS)/peaks over threshold (POT) approach
applied to daily discharge records for the 49-year gauged record of the Mae Chaem
river, northern Thailand. The minimum peak annual discharge over this period is 
114 m3s�1 (dashed line), and this forms the threshold for inclusion of flow peaks in 
the PDS (peaks must also be independent; a one-month separation of peaks is
conventionally used as an eligibility criterion). In the case of these Mae Chaem
records, this yields a PDS with n � 78
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data for FFA, but there are a large number 
of variants on these. The simpler class of
these conventional FFA models consists of
2-parameter functions that can be fitted
analytically, such as the log normal and
Gumbel extreme value type 1 (Gumbel EV1)
double-exponential model (see Table 2). The
two parameters represent location and shape,
and the mean and variance of the sample
population are employed (e.g., the annual
series of discharges for a gauging station) with
the method of moments (see below). The log
Pearson type III (LP3) and generalized
extreme value (GEV) models belong to a
class of 3-parameter models which cannot be
fitted analytically. The former is based on 
the gamma distribution. In both cases the
three parameters represent location, shape

and scale, and again, when the method of
moments is used, are based broadly on the
mean, variance and skewness of the distribu-
tion. The 2-parameter models have the
advantage of simplicity and ease of fit;
however the 3-parameter models, with the
additional scale parameter, are regarded 
as having the flexibility to fit a larger number
of catchments’ records (NERC, 1999).
Consideration of scale is also an acknowl-
edgement that most annual series are
significantly skewed.

Some lesser-known models include
members of the gamma distribution family
(e.g., the bivariate gamma distribution; Yue,
2001), the Weibull (Heo et al., 2001a; 2001b),
the extreme value family (e.g., trivariate
extreme value; Escalante-Sandoval and

Figure 2 Four FFA models fitted to a synthetically generated record of ‘annual
floods’ randomly sampled from a log normal distribution, and plotted in double-
logarithmic space. Three conventional models are shown: the Gumbel EV1, the 
two-parameter log normal (LN2) and the log Pearson type III (LP3). All these
distributions were fitted using the method of moments; the LP3 was fitted with the
Water Resources Council 1981: skew coefficient. Also shown is a power law (PL)
model fitted using simple least squares regression to the observed data. The three
conventional distributions exhibit a concave-down shape in log-log space, contrasting
with the PL which is a straight line
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Table 2 Probability density functions (pdfs) and/or cumulative density functions
(cdfs) for a selection of FFA distributions (adapted from Stedinger et al., 1993, and
Ramachandra Rao and Hamed, 2000)
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Raynal-Villasenor, 1994), and the logistic
distribution family (Ahmad et al., 1988). The
generalized pareto distribution (GDP) is a
specialized model for POT-type data
(Hosking and Wallis, 1987), and is based on
the Poisson (binomial) distribution. Examples
of the more commonly used models are pro-
vided in Table 2 and illustrated in Figure 2.

In several instances, a national standardi-
zation of the approach to FFA is enforced;
this may be to provide the semblance of
objectivity, and protection against legal
liability. The USA is a notable case, where the
LP3 has been the official model since 1967
(NRC, 1988), to which data from all catch-
ments are fitted for planning and insurance
purposes. There is a correspondingly large
body of research concerning this model (e.g.,
Vogel and McMartin, 1991; Wu-Boxian et al.,
1991; Fortin and Bobee, 1994; Ouarda and
Ashkar, 1998; Chen et al., 2002). By contrast,
the UK endorsed the GEV1 distribution
(NERC, 1999) up until 1999; the official distri-
bution in this country is now the generalized
Logistic (GL). There are several instances
where a number of alternative models have
been evaluated for a particular country, for
example Kenya (Mutua, 1994), Bangladesh
(Karim and Chowdhury, 1995), Turkey
(Bayazit et al., 1997) and Australia (Vogel et
al., 1993). One consequence of the adoption
of a single standard model is the ‘one size fits
nobody’ scenario, where optimal fitting to a
specific catchment is precluded by a (possibly

unsuited) national model–this may result in
mediocre accuracy on flood prediction in any
given basin.

Given the confusing range of models avail-
able, it is perhaps not surprising that there
have also been calls to adopt an international
standard for FFA (Bobee et al., 1993).
However, FFA results are obviously influ-
enced by model choice, and the best means of
quantifying this is through comparing a num-
ber of models (Haktanir and Horlacher,
1993). The proliferation of models is itself
symptomatic of the weak theoretical basis in
hydrology for the application of these FFA
models. Chow 1954: presents perhaps the
only convincing, hydrologically plausible theo-
retical argument justifying the application of a
particular model for FFA. Chow demon-
strated mathematically that multiplicative
random natural events would generate a log
normal distribution. Gumbel’s extreme value
theory (EVT: Gumbel, 1958) and this family
of FFA models have a theoretical basis in
closed-system statistical assumptions that
may or may not be hydrologically valid. For
the remaining models commonly applied, and
most notably the official distributions in 
the USA and UK, theoretical justifications
are weakly articulated, if at all, and theo-
retical considerations are rarely employed 
as a legitimate criterion to guide model selec-
tion in FFA. In the case of the officially
mandated models, their original selection 
was based almost exclusively on the basis 
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of empirical goodness-of-fit to the events 
of record: it is implicitly assumed that 
the best fit will provide the most reliable
extrapolation.

Classically, the appropriateness of a given
model is assessed via a goodness-of-fit
test (e.g., Chowdhury et al., 1991) and this
is another limitation of FFA: different 
goodness-of-fit tests will favour different
models, and not all models can be evaluated
by the same test. NERC (1999) demonstrate
a classic example where different goodness-
of-fit measures (e.g., absolute error and least
squares error) favour alternative models. The
FFA analyst, therefore, must be aware of
sensitivity to choice of goodness-of-fit test,
and it is useful to employ several of these to
test for sensitivity (e.g., Stedinger et al.,
1993). None of this supports the view that
one of these traditional models deserves to be
adopted as a universal choice. 

3 Parameter estimation procedure 
Having selected an a priori model, the next
step is to identify the parameters required to
fit the model to the selected data. This has
usually been achieved using the method of
moments (MOM), which is based on the
statistical moments (i.e., mean, variance,
skew) of the sample data. An alternative is
the L-moment method (Hosking, 1990), now
having wide application in regional analyses
(Adamowski, 2000). L-moments define the
characteristics of the sample discharge data
based on combinations of the difference
between two randomly selected events in the
data. A third parameter-fitting technique is
maximum likelihood (ML). This is a non-
analytical technique where parameters are
optimised via a search through parameter
space, hence it is computationally demanding.
ML offers a consistent, objective technique
for parameter fitting where the analysis
includes different types of data, and is partic-
ularly relevant for FFA where a systematic
record is combined with categorical data (in
the form of historical POT numbers)
(Stedinger and Cohn, 1986). 

A particular advantage of ML methods is
that they can be applied to probability density
functions (pdfs) that are multimodal or other-
wise complex (i.e., without a strong central
tendency, or deriving from the combination of
events drawn from different distributions).
ML has the flexibility to deal with informa-
tion/data that deviate from statistical
assumptions of normality (e.g., O’Connell
et al., 2002). As this characterizes much
hydrological data, ML is a valuable tool.
Furthermore, it is an approach that can assist
in defining confidence limits on discharge or
return period estimates. However, it is sensi-
tive to the choice of goodness-of-fit test cho-
sen for the optimization, and it is not possible
to arrive at numerical solutions for all cases.

III Model choice: an alternative 
The PL model (Table 2 and Figure 3) offers a
simple alternative to the more complex
probability models discussed above. The
evidence supporting PL distributions for
extreme natural events is growing, with
examples including earthquakes, volcanic
eruptions, landslides, avalanches and forest
fires (see Turcotte, 1994; Scheidegger, 1997;
Birkeland and Landry, 2002). Recent work in
other fields of hydrology also demonstrates
PL relationships for specific ranges of rainfall
data (Gupta and Waymire, 1990; Hubert,
2001) and catchment runoff (de Michele 
et al., 2002). A PL fit implies that discharge
ratios are the same (hence ‘self-similar’) for
given return period ratios, at least for a
certain range of discharge magnitudes
(scales), e.g., Q100/Q10 equals Q10/Q1, where
the scaling exponent is constant over this
range. Self-similarity offers a plausible theo-
retical basis for flood frequency analysis.

A prominent application of self-similarity
to FFA was presented by Malamud et al.,
(1996), who demonstrated a close fit of the
discharge/recurrence interval relationship of
the extreme 1993 event on the Mississippi
river with a PL model. Similar close fits were
demonstrated with historic and palaeoflood
data for the Colorado river. This was a

398 Flood frequency analysis: assumptions and alternatives
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significant outcome, as the PL model together
with historic (pre-instrumental) flood data
predict substantially larger discharges at a
given recurrence interval. If a PL model is
indeed the underlying probability model for
flood behaviour on these rivers, then the
estimated discharge of the industry-standard
100-year flood requires revision, with planning
and design decisions needing to be corre-
spondingly more conservative (Figure 4).

Improving the theoretical basis and docu-
menting additional case studies of PL behav-
iour constitute important areas for future
research. Alila and Mtiraoui 2002: assert that
the selection of the most plausible distribution
for flood frequency analysis should be based
on hydrological reasoning as opposed to the
sole application of the traditional statistical
goodness-of-fit tests. If goodness-of-fit

criteria, as applied to short-record annual
series data, are not regarded as the best test
of the applicability of a flood frequency
model, this leaves few grounds for accepting
any model a priori for a new catchment–
unless there is a firmly established, general-
ized theoretical basis. A critical outstanding
question in assessing the plausibility of the 
PL model is the scale at which PL behaviour
applies; flood magnitudes over a period of, say
10 years may be generated by processes dis-
tinct from those which produce the 100-year
or 1000-year floods, nonstationarity consider-
ations notwithstanding.

IV Mixed generating mechanisms
It is notable in Figure 4 that, while the PL
distribution fits the extremes well, it fails to 
fit the lower range of annual flood maxima.

Figure 3 Power law tail behaviour in daily discharge data. For the annual series,
there is a straight line divergence in plotting position of the observed events with low
probability, relative to the tail of an exponential curve fitted to the same data. Also
shown is the partial duration series (PDS). Use of the PDS tends to remove much
curvature in space at high exceedance probabilities, relative to annual series plots, and
often provides more compelling evidence of straight line (i.e., power law) behaviour in
log-log space
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Self-similar behaviour in a wide range of phe-
nomena exhibit a phase transition (Schertzer
et al., 1993), and PL scaling may only be
manifest above this. This implies that the PL
may be a model best used for large events
above a fairly high threshold. In turn, this has
the consequence that PL behaviour may be
difficult to detect in short records, if only a

small number of floods have exceeded the
phase transition threshold. Malamud et al.,
1996: utilized the partial duration series as a
means of overcoming this issue.

Many studies of self-similar processes are
multifractal, i.e., exhibit different PL scaling
exponents over different scale ranges. This is
significant for FFA because different flood

Figure 4 Annual maximum discharges (Q) of the Mississippi River at Keokuk, Iowa,
for the period 1879–1995, plotted on log-log axes against return period (T). The
annual series is fitted with a log Pearson type III distribution (LP3), and the partial
duration series with a power law model. The 1993 flood discharge has a return 
period of about 100 years according to the power law, but a return period in excess of
1000 years according to the LP3 model 
Source: after Malamud et al. (1996). Reprinted with permission of the authors.



generating mechanisms may give rise to dif-
ferent scaling exponents over specific ranges.
This recalls the approach developed by
Waylen and Woo (1982) and Waylen (1985) ,
which focuses on the concept of mixed
generating mechanisms for floods. Their
studies in Canada demonstrated that floods
caused by winter west-coast rain could be
identified and separately modelled in the flood
record from those caused by a distinct
process, spring snowmelt, and this study is
elegant in its simplicity (Figure 5). Recent
studies have further demonstrated the prob-
lematic and fallacious nature of attempting to
fit a single distribution to flood data generated
by separate identifiable climatic processes
(Murphy, 2001; Alila and Mtiraoui, 2002).
The practice is questionable of identifying
more complex multiparameter pdfs to
describe flood series that may include subsets
generated by distinct processes, each of
which may have a characteristic flood
distribution which is adequately defined by
a simple log normal or PL distribution.
Nevertheless, attempts have been made to
model such joint distributions using variants
of the traditional models (e.g., the Gumbel
mixed model of Yue et al., 1999, or the multi-
variate extreme value with Gumbel marginals
of Escalante-Sandoval, 1998).

The mixed generating mechanism concept
is closely related to a form of nonstationarity
in the flood record, and of course a critical
assumption of all FFA is that of statistical sta-
tionarity (Stedinger, 2000) and independence
of individual flood events. An annual flood
series may include several El Niño/La Niña
phases, with the flood magnitude pdfs for
these different climatic phases being notice-
ably different, as was classically demon-
strated in Australia with the identification of
‘drought dominated regimes’ (DDRs) and
‘flood dominated regimes’ (FDRs) (Warner,
1987). More recently this pattern has been
interpreted as a multidecadal nonstationarity
associated with modes in the Inter-decadal
Pacific Oscillation (Figure 6) (Kiem et al.,
2003). With this recognition, it is possible for

FFA studies to be used as evidence for
climatic nonstationarity (Franks, 2002)
following the temporal partitioning of data.
This of course reduces the sample size for
the fitting of individual pdfs, and thereby
makes the use of multiparameter extreme-
event distributions more difficult by increas-
ing the uncertainty of their parameter
estimates. This suggests that there are
practical reasons (of parsimony) for favouring
multiple simple distributions, in addition to
the possibility that there may be better
theoretical grounds for assuming that the
annual flood record is more likely to be
generated by mixed, simple distributions than
by single, complex ones. 

V The role of historical and 
palaeoflood data
Palaeoflood studies have traditionally been
utilized for testing assumptions about the
stationarity of the flood record over very long
(i.e., millennial) timescales (particularly the
existence of distinct climatic phases with
different flood-generating capabilities; Ely,
1997). Studies of long (Holocene-scale) flood
records demonstrate distinct temporal
clusters of flood events (Wohl et al., 1994; Ely
et al., 1996), reflecting the climatic history of
the region in question. However, another
possibility is the utilization of palaeoflood
studies over more modest timescales (e.g.,
100–200 years) for the purpose of testing the
self-similar hypothesis in catchments with a
short instrumented record. This also repre-
sents the timescale of most relevance for
design structures. This approach was utilized
in the following case study from northern
Thailand (Kidson et al., 2005).

1 An example from northern Thailand 
The Mae Chaem river is a tributary of the
Ping river to the southwest of Chiang Mai,
joining the Ping at the town of Hot. In its
lower reaches, the Mae Chaem passes
through the Ob Luang gorge (Figure 7), and
in the gorge there are caves which have
trapped woody debris in extreme floods

R. Kidson and K.S. Richards 401
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Figure 5 (a) Gauging stations on the Fraser River, British Columbia, and (b) annual
flood exceedance probability curves for the numbered stations, plotted on Gumbel
probability paper. Part (b) shows that flood frequency distributions are linear on this
probability paper when there is a single generating process (and generating distribu-
tion), with the coastal rainfall-generated floods showing a steeper curve than the
inland snowmelt floods. In a transitional region where the flood record is derived 
from both sources (and distributions), the curves reflect this combination 
Source: after Waylen, (1985). Reprinted with permission of the author.
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predating the instrumental record. There
have been large gauged floods in recent years,
notably in August 2001, and it has been possi-
ble to survey the water level of this event and
to calibrate a 1D hydraulic model to define the
roughness coefficient applicable in events of
this magnitude (Kidson et al., unpublished
data). The highest level flood deposits in the
caves provide four palaeo-stage indicators
(PSIs), and the 1D model with a roughness
coefficient as suggested by the modelling of
recent large flood events predicts a discharge
of 2420 m3s�1 for the water level implied by
these PSIs. Dating of this pre-instrumental
event in the gorge (using historical records,
oral history, dendrochronology and radio-
carbon dating) suggests that it occurred early
in the twentieth century, and a return period
of 84 years has been assigned to this event.
The details of this investigation are reported
elsewhere (Kidson et al., 2005). 

If FFA is undertaken for the instrumental
flood record alone, and conventional pdfs
(e.g., log Pearson type III, Gumbel EV1 and

two-parameter log normal models, all fitted
with the method of moments; the WRC
(WRC, 1981) skew coefficient was also used
in the case of the LP3) are used to estimate
the discharge of an event with a return period
of 84 years, the estimates are 1005, 1012 and
1040 m3s�1, respectively. They thus severely
underestimate the discharge of the event
associated with the PSIs in the gorge. By
contrast, a PL model fitted by reduced major
axis (RMA) regression to the gauged record
yields an 84-year discharge estimate of 
2479 m3s�1, which is a close match to the
observed extreme event (Figure 8). In this
application, the extreme event is not included
in the model-fitting process; this data point is
reserved in order to assess the predictive
success of the models. This represents a
methodological departure from conventional
FFA, where all data points are used for
the model calibration process, leaving none 
with which to assess the model. Hence, the
predictive quality of conventionally fitted
models remains untested.

Figure 6 Regional flood frequency index curves for New South Wales, Australia,
showing the expected values and the 90% confidence interval under El Niño and 
La Niña conditions 
Source: after Kiem et al. (2003). Reprinted with permission of the authors.
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The consequence of this finding in the
case of the Mae Chaem is significant, in that
the Gumbel EV1 model is the official basis
for FFA in Thailand, where the maximum
record lengths tend to be of the order of 
50 years. However, in this catchment it
appears to underpredict the magnitude 
of the 84-year event significantly, with
inevitable consequences for structural
design and planning.

2 Implications of threshold exceedance
It appears that the PL model may be applica-
ble for very extreme events, but not for
events around the mean annual flood; there-
fore the important question of appropriate
methods of fitting PL models deserves closer
research. For long records (e.g., 100 years),
the threshold above which PL behaviour
begins may be visible in the gauged record,
permitting a regression relation using these

Figure 7 The Ob Luang gorge, lower Mae Chaem river, under low-flow conditions
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data–however, this may not be the case for
records of short length, and other techniques
and supplementary data may be required.
This increases the importance of historical
and palaeoflood information, since this is
generally available in the form of peaks over
threshold (POT). Often, the exact magni-
tude of an event is unknown, but is it is
known to have exceeded a specific threshold:
indeed, as Stedinger and Cohn 1986: note,
‘historical floods are observed because 
their magnitude exceeds some threshold of
perception’.

One of the positive consequences of the
application of sophisticated statistics to FFA
has been the generation and refinement of
methods which usefully incorporate palae-
oflood and historical information into FFA
models. To take the POT example, this
censored form of information, where no data
are available on the flows below the thresh-
old, poses a major statistical challenge (Kroll
and Stedinger, 1996). Inclusion of historical

and palaeoflood information to extend a
gauging record typically ‘fills in’ the ungauged
portion of the historic period with an appro-
priate number of replicates of the below-
threshold portion of the systematic record.
Various methods of achieving this have been
proposed. The simplest is the probability
weighted moments technique, advocated by
IACWD (1982). However, Stedinger and
Cohn (1986) demonstrated that a ML-based
technique was superior: recently Cohn et al.,
(2001) have proposed an expected moments
(EM) technique as an alternative where
application of ML poses numerical problems
(Ouarda et al., 1998). All of these techniques
are designed to reduce systematic bias in
estimates in the low-probability range.
However, these are also examples of rela-
tively abstruse statistical procedures which
might be redundant or require revision within
a self-similar modelling framework.

Hosking and Wallis (1986a; 1986b) ques-
tioned the utility of incorporating palaeoflood

Figure 8 Four models fitted to the gauged annual floods of the Mae Chaem river;
the reconstructed palaeoflood is also plotted, and the success of each of the models in
predicting the palaeoflood (this event was not included in the model fitting process)
are graphically illustrated



and historical information in FFA, demon-
strating that it depends on the number of
model parameters and the degree of discharge
error. Frances et al., (1994) also qualified its
utility in terms of the relative magnitudes of
the length of the systematic record, the
length of the historic period, the perception
threshold and the return period for which 
an estimate is required. Some of these qualifi-
cations also become less relevant if the
extremes represented by palaeofloods are
considered within a self-similar modelling
approach. Several studies have now demon-
strated the value of noninstrumental flood
information in FFA (Stedinger and Cohn,
1987; Jin and Stedinger, 1989; Webb et al.,
1994; Ouarda et al., 1998; Williams and
Archer, 2002). In most cases these studies
have been formulated within an existing para-
digm of FFA based on the use of conventional
extreme event distributions. It can be seen
that these same data are of especial value in
seeking to test self-similar hypotheses in flood
behaviour; in a sense, palaeoflood and historic
data represent more viable and efficient data
sources on which to conduct such tests than a
meagre increase in the length of the continu-
ous instrumented record, which may yield no
floods of sufficient magnitude to add value to
a PL model. It is possible that the noninstru-
mental evidence of censored, and therefore
particularly extreme, events may lead to a
paradigm shift in which self-similar models
play a greater role. 

VI Discussion and conclusion
FFA analyses incorporate assumptions at
each stage of the modelling process. An
important one is the assumption of a high
degree of accuracy in the estimation of
discharges. It is known that considerable error
is introduced, both in measurement in the
instrumental record, and in modelling of
palaeoflood discharges. Yet this assumption
is the basis for the considerable body of
literature addressing statistically detailed
procedures focused on model parameter
fitting and testing. The most fundamental

assumption is that of the conceptual model,
of which the self-similar PL approach repre-
sents a major alternative to conventional
distributions. 

Future research can usefully address these
respective sources of uncertainty, at the most
fundamental level challenging basic assump-
tions, and at the most practical level aiming to
reduce the confidence intervals placed
around flood recurrence estimates (NRC,
1999). The recent history of FFA has seen a
range of innovative approaches that reflect
the methods required in historic and palae-
oflood studies. For example, the concept of
the palaeohydrologic bound (Levish, 2002;
O’Connell et al., 2002) has emerged recently,
which is the time interval during which a
particular discharge is not exceeded, ascer-
tained through dating the geomorphic surfaces
that have not been inundated. This offers a
more reliable means of defining upper confi-
dence limits on flooding for major structures
such as reservoirs. Also, Vogel et al., (2001)
have introduced the concept of the record-
breaking flood – an event which exceeds all
previous events, and this represents a new
application of a branch of mathematics
distinct from extreme value theory. These
approaches represent a promising avenue in
which to test alternative modelling frame-
works (including the self-similar one), and
there are thus good grounds for suggesting
that the noninstrumental observation of the
occurrence of extreme floods offers the best
potential for a paradigm shift in FFA.

The history of FFA has been distinguished
by the employment of increasingly sophisti-
cated statistical techniques to satisfy the
demand for rigorous curve fitting. This has
increased the robustness of estimates and the
treatment of uncertainty – but only embed-
ded within the broader model assumptions.
National mandates for particular models may
be said to have reduced the tendency to chal-
lenge the conventional models, and has
instead facilitated work within this paradigm.
These methods have been flexible enough to
incorporate the mixture of flood information

406 Flood frequency analysis: assumptions and alternatives



that may be available for a single catchment:
site-specific, regional, historical and palae-
oflood information. However, concomitant
theoretical advance in FFA has been some-
what limited; for example, Singh and
Strupczewski (2002) have noted that the
fitting of flood frequency models is largely a
statistical exercise somewhat divorced from
hydrological input. Given the many implicit
assumptions in FFA, the safest approach lies
in testing and citing the sensitivity of a given
analysis to a range of possible techniques at
each stage of the modelling process.

In the sense that FFA for a catchment is
ultimately information-dependent, it is impos-
sible to identify which of the many FFA tools
should be employed in a given instance. 
A state-of-the-art analysis is likely to entail a
multidisciplinary approach, incorporating 
the results of both physically based (e.g.,
rainfall/runoff) modelling with detailed instru-
mental gauging data, supplemented with
regional data, and historical and palaeoflood
information (Stedinger, 2000). The cases
where this full range can be applied in combi-
nation are limited. Nevertheless, in those
catchments where there is evidence of a
censored set of historic and palaeoflood water
levels which can be converted into discharges,
it is likely that flood frequency analyses may
require radical revision as new theoretical
concepts are increasingly employed. The self-
similar PL model offers particular promise for
the prediction of extreme events. Since
individual catchments often do not supply a
sufficient length of instrumented record on
which to test alternative extreme event
models, emphasis is placed on the relevance of
historical, palaeoflood and regional evidence
as a means to overcome the data limitations in
single catchments and ultimately improve
extreme flood prediction.
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