Flood Hydrometeorology & Hydroclimatology –
Implications for a Future of Global Change and Extreme Hydrology
1-3 units / Tuesdays 5:00 – ~7:30 pm Bannister Tree-Ring Building 424

Instructors: Katie Hirschboeck ¹ & Victor Baker ²

¹ Associate Professor of Climatology Laboratory of Tree-Ring Research
with Joint Appointments in: HWRS, ATMO, and School of Geography & Development
² Regents Professor, Hydrology & Water Resources, with Joint Appointments
in Geosciences and Planetary Sciences

Katie’s office: Bannister 319 phone: 621-6466
Email: katie@ltrr.arizona.edu Webpage: www.ltrr.arizona.edu/~katie
Office Hours: Wed 2 – 3 pm or by email appt.

Vic’s office: Harshbarger 246a phone: 621-7875
Email: baker@email.arizona.edu Webpage: www.hwr.arizona.edu/users/baker
Office Hours: TBA

CLASS WEBPAGE: www.ltrr.arizona.edu/kkh/hwrs/696f.htm

Course Description: This graduate seminar course will focus on the meteorological and climate-related
causes of floods, both regionally and globally, and the overarching scientific issues related to floods. After
an overview of flood-generating processes, participants will examine and present case studies of a selection
of past major flood events in the United States based on published post-flood reports (USGS, NOAA). In
tandem with these case studies, we will review and discuss relevant classic and current scientific literature
on flood hydrometeorology, hydroclimatology, extreme precipitation events, and flooding & climate
change. The semester will also include readings and discussion on the policy and planning implications that
emerge from this physically based, climate-linked understanding of the underlying causes of flooding
variability. To critically evaluate and apply the knowledge gained, 3-unit participants will complete an
individual or class project, such as the analysis of a selected watershed’s flood history to assess past,
present, and (projected) future climate-related drivers of its floods, a study of the Rillito watershed
decades after the 1983 and 1993 floods, a group publication manuscript, etc. Project options will be
discussed and agreed upon in class.

Course Objectives:
-- To become familiar with regional and global patterns of flooding and the weather and climate processes
that produce them
-- To gain a deeper understanding of the atmospheric and hydrologic causes of floods in specific regions by
examining and reporting on case studies of selected floods
-- To review and discuss the relevant classic and current scientific literature on flood hydrometeorology,
hydroclimatology, extreme precipitation events, and flooding & climate change
-- To examine and discuss the overarching scientific issues related to flood analysis, and the policy and
planning implications of flood hazard assessment for present and future flooding
-- To critically examine and apply this information by completing an individual or class project (3 unit
enrollment requirement)

Prerequisites: Background in the basics of one or more of the following areas: hydrology, meteorology,
climatology, geomorphology and/or water resources; plus basic statistics (probability)

Grading Criteria & Expectations: Your grade will be based on effort and performance in the following areas:

(1) Readings & Discussion 1-unit 3-unit
 50% 33%
(2) Case Study Research & Presentations
 50% 33%
(3) Research Project & Presentation
 ---- 34%
Attendance: Required. If unavoidable problems require you to miss a class, arrangements can be made to make-up one absence.

Academic Integrity: A synopsis of the UA’s Code of Academic Integrity can be found at: deanofstudents.arizona.edu/policies-and-codes/code-academic-integrity You are to know it, understand it, and adhere to it.

Assigned readings will be linked to the class webpage as password-protected PDFs or as links to items in the U.S.G.S. Publications Warehouse: pubs.er.usgs.gov/ Some USGS files need the DjVu browser plugin available at djvu.org/resources/

VERY TENTATIVE CLASS SCHEDULE
To be updated based on class interests & input!

<table>
<thead>
<tr>
<th>Wk</th>
<th>DATE</th>
<th>TOPIC</th>
<th>CLASS ACTIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jan 20</td>
<td>Overview of Course</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Jan 27</td>
<td>Flood Hydroclimatology, Scale & Climate Change</td>
<td>KKH presentation & discussion</td>
</tr>
<tr>
<td>3</td>
<td>Feb 3</td>
<td>Flood Hydrogeomorphology, Paleofloods & Science</td>
<td>VRB presentation & discussion</td>
</tr>
<tr>
<td>4</td>
<td>Feb 10</td>
<td>Flash Flood Hydrometeorology</td>
<td>Guest speaker: Bob Maddox</td>
</tr>
</tbody>
</table>

FLOOD CASE STUDIES

	Feb 17 *	TBD / Flood Case Study Selections	
	Feb 24	Flood Case Study Presentations	presentations
	Mar 3	Flood Case Study Presentations	presentations
	Mar 10 / 12*	Flood Case Study Presentations	presentations
	Mar 17	Spring Break	

“TESTING THE CONVENTIONAL WISDOM”
PAST, PRESENT & FUTURE FLOODING: EXTREMES / TRENDS / CLIMATE CHANGE

	Mar 24	Readings & Discussion TBD	
	Mar 31	“	
	Apr 7	“	

FLOOD FREQUENCY ANALYSIS & SCIENCE / POLICY & PLANNING IMPLICATIONS

	Apr 14	AAG meeting / work on project this week	
	Apr 21	Readings & Discussion TBD	
	Apr 28	“	

| | May 5 (or alt date) | Class Finale: Research presentations & Class Wrap Up | student research presentations |

Dates with * - an alternative day, time and/or location may be set up for these dates, agreeable to all

NOTE: Information contained in the course syllabus, other than the grade and absence policies, may be subject to change with reasonable advance notice, as deemed appropriate by the instructor.