WRAP UP OF VOLCANISM & CLIMATE FORCING . . .

WHICH ERUPTIONS ARE THE MOST CLIMATICALLY EFFECTIVE?

• EXPLOSIVE

 high SULFUR content in magma

 whose eruption clouds inject into the STRATOSPHERE

Low Latitude Eruptions

How an eruption's effects can become GLOBAL:

•The GEOGRAPHIC **LOCATION** of the erupting volcano influences the climatic effectiveness of an eruption because of the General **Circulation of the** Atmosphere.

• Low latitude eruption clouds get circulated more broadly & in both hemispheres

See box on p 79 for a good summary of which eruptions are CLIMATICALLY EFFECTIVE

G-6 ACTIVITY ON VOLCANISM & CLIMATE

P.S. This is one of my favorite questions to ask on the FINAL EXAM!!!!

Compariso r Latitude	How much agma \rightarrow how g an eruption Estimate tempera aerosol got into each hemisphere Sulfur-rich if high H_2SO_4 Estimate tempera Sulfur-rich						N.H. ure °C
Eruption & Latitude	Year	Amount of Magma	Stratospheric Aerosol (Mt)		H ₂ SO ₄ estimate	Estimated Temp char	I.H. nge
		Erupted (km ²)	S.H.	N. H .	(Mt)	(°C)	
Tambora (8°S)	1815	50	150	150	52	-0.4 to -0).7
Krakatau (6°S)	1883	10	~34	55	2.9	-0.3	
Santa Maria (15°N)	1902	9	22	<20	0.6	-0.4	
Katmai (86°N)	1912	15	0	<30	12	-0.2	
Agung (8°S)	1963	0.6	30	20	2.8	-0.3	
Mt St. Helens (46°N)	1980	0.3	0	no info	0.08	0 to -0.1	1
El Chichón (17°N)	1982	~ 0.3	<8	12	0.07	-0.2	
Pinatubo (15°N)	1991	~ 5	no info	~25	~0.3	-0.5	
		(Large eruption if lots of magma)	(How much got into each hemisphere)		(Sulfur-rich if high)		

IMPORTANT: if **NO INFORMATION IS AVAILABLE,** <u>this does not mean the</u> value is zero! **#1. List 4 reasons why Tambora in 1815 resulted in the largest GLOBAL cooling:**

2. Give at least two reasons why the eruption of Mt St. Helens was NOT a very climatically effective eruption:

P.S. This is one of my favorite questions to ask on the FINAL EXAM!!!!

#3. Which levels show a COOLING and which show a WARMING immediately after the eruption?

** NOTE: At the time of the El Chichon eruption, there was warming taking place due to a <u>strong</u> El Nino, hence the temperature change after this eruption shows a different response.

When ANSWERING # 3 & #4 – focus on Agung & Pinatubo only

#4. Explain WHY each level's **TEMPERATURE** responded as it did to the Agung & Pinatubo eruptions?

(by referring to the Radiation Balance)

When ANSWERING #3 – focus on Agung & Pinatubo only

REMEMBER THIS IMPORTANT GRAPH?

SKETCH A NEW <u>CURVE A</u> OR NEW <u>CURVE B</u> to show how the energy balance would change if a major volcanic eruption occurred.

reduced (A curve goes down)

LW L

If outgoing energy represented by Curve B is reduced (B curve goes down)

represented by Curve A is increased (A curve goes up)

If outgoing energy represented by Curve B is increased (B curve goes up)

Assume:

 that the eruption produces a long-lived <u>aerosol veil</u> in the stratosphere over <u>both</u> hemispheres

• that this veil <u>reflects</u> large amounts of incoming solar radiation back to space *before* it enters the troposphere's earthatmosphere system shown in the graph.

• *Hint: you do not need to worry about stratospheric warming for this question.*

IF CURVE A is affected:

LW

Four scenarios are possible for how you should sketch the new graph

HAPPY HOMECOMING!!

GO CATS!