ANSWER KEY TO MIDTERM 2013 PRACTICE QUESTIONS:

- 1a. Y = visible light part of spectrum 1b. Z = infrared part of spectrum 1c. X = UV part of spectrum
- 2. (c) since there are 3 electrons depicted in the atom, and it is neutral, then there have to be 3 protons in the nucleus. [see p 19 in Class Notes for a review]
- 3. (d) when energy is absorbed by an electron, it leaps to a higher energy level. Remember that an electron is MATTER, while a photon is ENERGY -- the MATTER does the absorbing and emitting, while the PHOTON of energy is the thing that IS absorbed or emitted.
- 4. FALSE We haven't yet talked much about the ozone hole -- this is NOT how it works or why it is important so the statement is false. But have you pieced together in your mind how the Earth DOES cool?? ANSWER: The earth cools by radiating a great deal of its infrared (IR) radiation out to back out to space through the IR Atmospheric Window!
- 5. TRUE 6. (d) see p. 43 in SGC-E-Text Chapter 3: section on Planetary Energy Balance
- 7. (a) this is just the inverse of the "mantra quote" in the box on the bottom of p 27 of Class Notes (below the cartoon with the rope being shaken): "The shorter the wavelength the greater the energy & the higher the frequency"
- 8. (c)
- 9. (d) [See the section on "Physical Causes of the Greenhouse Effect" on pp 48-50 in SGC-E-Text Chapter 3 for a review of this concept]
- 10. (c) see the section in SGC-E-Text referred to for #9 above.
- 11. (b) see p 39 in Class Notes and the Table 3-2 and 3-3 in SGC-E-Text
- 12. (b) Remember that short wavelengths, high frequency, and high energy all go together, and be sure you understand that ultraviolet (UV) wavelengths are *shorter* than infrared (IR) wavelengths. Another key thing to remember is that **ONLY** infrared (IR) energy is involved in the Greenhouse Effect!!
- 13. (d) This one takes careful reading. There is something wrong in every choice but (d). Choices (a) and (c) both imply that that long wavelengths and hot temperatures go together, but you should remember that Wein's Law is an *inverse* relationship between wavelength and temperature, so they can't be correct. Choice (b) describes the relationship between wavelength and radiation intensity (energy flux), *not* temperature, hence it is also incorrect. That leaves choice (d) which is the "mantra" for Wein's Law.
- [TEST-TAKING HINT: Note that in Question #13 the phrases **bolded** are there **to help you sort through similar sounding phrases.** Look for clues like this in the real exam and TAKE YOUR TIME so you can sort out the correct answer logically based on what you know and clues that are given in the question.]
- 14. (c) Using the logic described above, only (c) relates wavelength (lambda) with temperature in an inverse relationship.
- 15. (d) To answer this one correctly you must understand the underlying principle of absorption curves. Each curve represents the wavelengths that are absorbed easily by a specific substance (usually a gas) or group of gases. Not all substances absorb and emit the same wavelengths of energy, even if the temperature of the substance is exactly the same. It's true that (a), (b), and (c) are all correct statements based on the radiation laws, but only (d) gets to the essence of why different gases have different absorption curves.

- 16. (c) infrared radiation To answer this correctly, you have to know the "micrometer boundaries" of UV (< 0.4), visible (0.4 0.7), and IR (> 0.7) part of the spectrum and also know that the microwave part of the spectrum begins at much longer wavelengths than those depicted in the figure (at about 100 micrometers)
- 17. (c) both solar and terrestrial Graph B is the graph of absorption by ozone gas. It shows that ozone can absorb harmful UV wavelengths (which is why the ozone layer in the stratosphere is beneficial) and it can also absorb IR wavelengths (which is why ozone can also be considered a greenhouse gas).

[NOTE: Ozone enters into Global Change issues in two different ways: (1) as a factor in the ozone layer and the ozone "hole" issue (which we'll be covering later), and (2) as a greenhouse gas. These are TWO VERY DIFFERENT ISSUES with very different processes involved! The key to understanding the difference between the two issues is in the dual properties of ozone absorption - the fact that ozone is a greenhouse gas that absorbs IR radiation is a totally DIFFERENT property than its additional ability to absorb in the UV part of the spectrum!!!! Don't confuse these two things!!!]

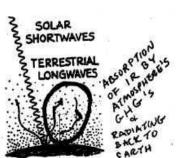
- 18. (c) Here you have to be familiar with the wavelengths of maximum emission of energy by both the Sun (0.5 micrometers in the middle of the visible light part of the spectrum) and the Earth (10.0 micrometers in the infrared (IR) part of the spectrum. Choice (d) states things backward with respect to the greenhouse effect. Choice (e) may sound like the right answer, but remember that the Sun radiates in ALL wavelengths, not just visible light.
- 19. (b) 20. (c) 21. (a) review p 47 In Class Notes
- 22. (b) You can figure this one out if you remember that the shortest wavelengths are the most harmful because they contain the highest frequency wavelengths of electromagnetic energy. You also need to remember that the ozone layer absorbs the most harmful wavelengths of UV radiation (UVC and some UVB), but not UVA. See also Arrows 3 & 4 in the figure on p. 38 of Class Notes. UVC radiation is very harmful, and luckily both UVC and most of the UVB are absorbed by gases in the atmosphere BEFORE they reach the Earth's surface. UVA (and actually some more harmful UVB) gets through the atmosphere to the surface, which is why we need sunscreen!
- 23. Troposphere 24. Stratosphere 25. Mesosphere 26. Thermosphere

[HINT: if this appears as a multiple choice question, don't get thrown off by similar sounding, but incorrect choices such as: *tropopause*, *stratopause*, *"menopause"* etc. etc.

- 27. (c) It's not (a) because atmospheric pressure decreases with altitude (see Fig 3-9a in SGC-E-Text). It's not (b) because CO₂concentration (as well as the concentration of all the other GHG's except for ozone) is highest in the troposphere. It's not (d) because temperature is warmest at the Earth's surface and then decreases through the troposphere -- this figure shows the highest values are in the stratosphere.
- 28. (b) Is the best answer quasi-periodic oscillations with an increasing trend
- 29. Won't be on Midterm 2013
- 30. (a) convection is defined as the transfer of energy by means of large-scale movements of matter (recall that conduction is molecule-to-molecule transfer of energy (with the molecules not changing position) and that the transfer of energy as LW (infrared) radiation or SW (UV or visible light) radiation occurs as electromagnetic waves which can transfer energy without matter.

IMPORTANT: Don't confuse outgoing IR radiation with rising warm air! **Infrared (IR)** is energy, NOT moving warm air -- the IR energy is NOT sensed as heat or warmth until it is ABSORBED by something (e.g., greenhouse gas molecules, etc.)

- 31. (d) incoming shortwave energy (UV, visible light) is transferred as photons or pulses of energy
- 32. (b) the sand will heat up faster and get hotter than the water because it takes less energy (in calories) to change its temperature. (It will also cool off faster than the water) Remember that because of its high specific heat and heat capacity, water takes longer to heat up, but once heated up, it will hold that heat longer. Substances with lower specific heats and heat capacities (like air and soil) respond more readily to changes inputs of energy than water and heat up and cool off faster.


- 33. (c) Figure X implies that the IR/ longwave (LW) terrestrial radiation is being reflected back to the Earth's surface. What really happens is that the IR radiation is <u>absorbed</u> by the Greenhouse gases (GHGs) in the atmosphere, and then <u>radiated back down</u> to the surface. As discussed in class, both Y and Z show the absorption and re-radiation of IR, but Y also has part of the incoming shortwave (SW)/Solar radiation circled. The Greenhouse Effect (GHE) involves <u>ONLY</u> INFRARED radiation, so circling some of the Solar / SW makes Y an incorrect choice. HINT: If you are asked to circle the part of the figure that represents the GHE, be careful that you circle <u>only</u> the Terrestrial IR/LW radiation part of the figure and not some of the Solar/SW too!
- 34. (c) We learned that a well-designed LED (light emitting diode) bulb can be up to 80 % efficient, which means that the thermal energy lost due to inefficiency will be 20%. The input of energy to a light bulb is electrical energy.
- 35. (a) The Law of Conservation of Energy is the same thing as the 1st Law of Thermodynamics]
- 36. (d) Look closely at the figure! The thermal energy flow is going <u>from</u> the cold ice cube <u>to</u> the warm finger and this violates the 2nd Law of Thermodynamics!

end of multiple choice practice questions

SAMPLE ESSAY QUESTION:

37a. Of the 3 figures shown, Figure Y displays the best representation of the Greenhouse Effect (although note that it doesn't represent ALL the pathways of SW and LW that are discussed on the bottom of page 35 in Class Notes...)

37b. (see sketch below) Be sure you do <u>NOT</u> circle any of the SW radiation part of the figure -- the GREENHOUSE EFFECT involves LW (Infrared) radiation ONLY

37c. (Be sure to explain \underline{WHY} X and Z are incorrect in addition to saying \underline{WHY} Y is more accurate.)

Figure X depicts all terrestrial LW radiating right back out to space;

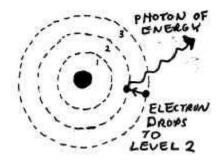
Figure Z implies that the terrestrial LW is REFLECTED back down to the Earth's surface -- this is NOT what happens!

Figure Y is more accurate because it shows the LW being ABSORBED by gases in the atmosphere and then being RADIATED (not reflected) back to the Earths's surface.

37d. Here's the definition given in the Midterm Study Guide (under Topic #6): "The greenhouse effect is the natural mechanism by which the Earth's surface is warmed by infrared-absorbing gases (i.e. greenhouse gases) in the atmosphere."

NOW, work on your OWN wording of the concept -- don't just memorize or repeat the above. Avoid words like "bounce" or "reflect" whenever you are discussing longwave infrared radiation! Instead be sure to make the point that the greenhouse gases absorb IR and then radiate it (emit it) out again. Also, don't get confused in your words and start talking about the greenhouse gases being absorbed! The gases do the absorbing and emitting of the IR radiation, they are NOT absorbed themselves.

38. (a) troposphere

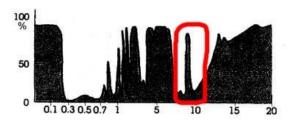

39. [For the answer, see p 37-38 in Class Notes and the discussion on the Structure of the Atmosphere in SGC-E-Text Chapter 3.] The **troposphere** decreases in temperature with height because it is primarily heated from below by terrestrial infrared energy radiating upward from the Earth's surface. The **stratosphere** increases in temperature with height because the ozone layer is in the stratosphere and the higher you go in the stratosphere the more incoming UV there is to be absorbed by ozone (and oxygen). When these gas molecules absorb the high energy UV radiation, they are energized and move faster ("jiggle" more) and hence the atmosphere warms up at this level. (Note however that the air in the stratosphere is much less dense than the air in the troposphere.)

- 40. This question is one that asks you to apply concepts you've learned to a less familiar topic: the Kramer Junction solar plant in the Saved by the Sun video.
 - (a) ENERGY is transferred from X-to-Y (from the SUN to the SYNTHETIC OIL in the red tubes) by RADIATION
- (b) When water in the **Solar Super-heater vat** boils instantly, the Y-to-Z heat transfer that occurs can be described as the transfer of **SENSIBLE HEAT** in the SYNTHETIC OIL to **LATENT HEAT** in the STEAM.

NOTE: There are lots of energy transfers going on this solar thermal plant!! I selected some of the most basic ones to ask about in this question.

Do you have a feel for how does this kind of solar energy technology differs from a photovoltaic cell? **ANSWER:** a photovoltaic cell involves photons from the sun being absorbed by a silicon layer and "knocking loose" the electrons from their atoms in the silicon layer so that electricity can be generated. (If you are curious and interested in learning more details for your Linking-to-Life Project, see: http://www.pbs.org/wgbh/nova/tech/how-solar-cell-works.html and http://www.pbs.org/wgbh/nova/tech/solar-tech.html

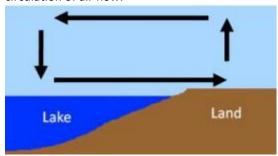
41. (see sketch below) (If you get a question like this, be sure your follow all the directions and **LABEL** your sketch (as shown below) in addition to just drawing in the answer.)



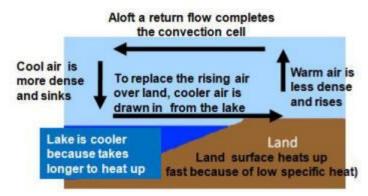
NOTE: Be sure that you depict the **ELECTRON leaping between energy levels**, NOT a photon! The electron emits or absorbs a photon of energy, not the other way around. Also be sure you show the photon being EMITTED if the electron leaps to a LOWER energy level. (Or, if the question asks you to show what happens when a photon is ABSORBED, show that the electron leaps to a higher energy level.)

42. The sketch below represents a hypothetical atmosphere in which ALL UV is absorbed, while all VISIBLE & IR radiation is transmitted, or allowed to get through the atmosphere:

43. You should have a circle around the open (not black) areas in the part of the spectrum that is roughly around 8 - 12 $\mu m.$ (Not around the range of 0.3 - 0.7 μm in the shortwave part of the spectrum!) Note that there is one "spike" of absorption that takes place right in the middle of the 8 - 12 μm IR atmospheric window at ~ 9.6 $\mu m.$ This absorption is caused by the gas ozone. (See p 49 in SGC-E-TExt and the caption for Fig. 3-13)


WHY is this wavelength range referred to as an "atmospheric Window"

Wavelength (micrometers)


Think about what a regular glass window does (allows light to pass through it.) Know that "light" is in the visible part of the spectrum. Figure out what part of the spectrum the 8-11 μ m "atmospheric window" pertains to, and then make some statement about what this IR "window" does or allows to happen.

Note that the open areas in the UV/visible part of the spectrum ($^{\sim}$ a range of 0.3 - 0.7 μ m) are <u>also</u> referred to as an "atmospheric window" -- but the wavelengths of radiation that are being transmitted through this window are different from the wavelengths being transmitted through the IR window referred to in Question #43 -- The UV/Visible window allows incoming solar (UV and visible) radiation IN to be absorbed by the Earth's surface, the IR window allows outgoing terrestrial IR radiation OUT to space.

#44 See p 44 in Class Notes. Here's what you should have sketched for the circulation of air flow:

And here is an explanation for why the air circulates this way:

45. b best describes the growth pattern seen in the rings. WHY? It's because the rings in the figure are almost all the same width wire much variation from year-to-year. This is a COMPLACENT type of pattern.

What's the difference between a complacent and sensitive tree-growth pattern? A COMPLACENT pattern does not reveal much about interannual (year-to-year) climate variations because every year looks the same. It will also be very hard to crossdate a pattern like this because it has no exceptionally narrow rings to match up from one tree sample to the next on a skeleton plot. The type of pattern that reveals information about year-to-year climate variations is the SENSITIVE tree-ring pattern. A SENSITIVE pattern is characterized by so really narrow rings and lots of year-to-year variation in the rings, making it much easier to match and crossdate from one core to another.

Why might a tree have one pattern or the other? A complacent tree is one that is <u>not</u> stressed by climate or other environmental fa (e.g. has plenty of access to water, not in a location where it is susceptible to freezes or droughts, etc.) A sensitive tree is one that is of stressed by climate or other environmental factors (e.g., on a steep slope so very little moisture for the tree is retained in the soil or in location where it is susceptible to drought, freezes, etc.)

46. **Explanation #3.** To answer this, just reason things out and eliminate answers that don't make sense based on your reasoning. The concepts you should know are: that SUV's have larger mass, therefore they have more inertia, and -- if they are moving -- they will have more momentum. To get a massive SUV moving from a stop takes a large amount of force and acceleration, which comes from the energy of fuel consumption.