Thursday Dec 4th TOPIC #14 IMPACTS & ISSUES Wrap Up & The G-6 Bristlecone Pine Activity SIT WITH YOUR GROUP TODAY

ANNOUNCEMENTS:

LINKING-TO-LIFE PART C – Project SLIDE & REPORT Slide: Due Tue Dec 9 in the dropbox <u>before</u> class next Tue Report: Due Wed Dec 10 in the dropbox before Midnight

Your last RQ (RQ-9) will be posted next week and will be due anytime before the Final Exam

Our FINAL EXAM is on: THURSDAY Dec 18th @ 10:30 am – 12:30 pm in this CLASSROOM (note the 10:30 am start time!)

The FINAL EXAM Study Guide will be posted by the end of next week and Study Sessions will be held during the Exam Week (day + time TBA)

ABOUT THE FINAL EXAM . . .

THURSDAY DEC 18th 10:30 am -12:30 pm

IN <u>THIS</u> CLASSROOM ← NOTE earlier start time!! (Sorry, no options to take it earlier!)

- Worth 105 pts: about 25 multiple choice Q's, plus short answer, make-a-sketch, & short essay Q's
- Q's will focus on material since the MIDTERM EXAM, but some concepts will carry over (these will be spelled out on Study Guide)
- **STUDY GUIDE with practice questions** will be provided next week (similar to guide for Midterm Exam) . . . plus some practice questions in class next Tuesday.
- PRECEPTORS & TAs will hold STUDY SESSIONS during Exam Week – day & time to be announced later

LINKING-TO-LIFE PART C "DELIVERABLES"

Some pointers for your Slide for next Tuesday's Class:

- Be sure you have all the items in the "Deliverables" Checklist clearly shown on your slide (incl your Name & Group #)
- Be sure any images on your slide are visible on both Mac and PC computers (may submit your ppt slide <u>plus</u> a PDF copy, just to be safe)
- Submit only ONE (1) slide, with <u>NO</u> animations on it!
- Have your slide in the DROPBOX <u>before</u> class so it can be inserted into the "BEST GROUP SLIDE PPT SHOW" if yours is chosen!
- Remember to bring a copy of your slide (on paper, on a laptop, or on another device) so you can share it with your group

Before submitting your FINAL SLIDE, <u>double check it</u> to be sure you've addressed all the items spelled out in the GRADING RUBRIC that is now POSTED IN THE LTL PART C DROPBOX

LTL Part C SLIDE RUBRIC:

Criteria	Truly Exceptional	Very Good	Average	Below Average	Marginal	Unacceptable
Purpose & Motivation stated	5 points	4 points	3 points	2 points	1 point	0 points
GC Connection: connection to course topics	3 points	2.5 points	2 points	1 point	0.5 points	0 points
GC Connection: illustration of connection	2 points	2 points	1.5 points	1 point	0.5 points	0 points
GC Connection: overall quality	4 points	3 points	2 points	1 point	0.5 points	0 points
What & How: what data/info looked at	5 points	4 points	3 points	2 points	1 point	0 points
What & How: what was done with info	5 points	4 points	3 points	2 points	1 point	0 points
What & How: use of phrase, diagram, table or graphic	3 points	2.5 points	2 points	1.5 points	1 point	0 points
What & How: overall quality	4 points	3 points	2 points	1 point	0.5 points	0 points
Conclusion/Bottom Line: stated	3 points	2.5 points	2 points	1.5 points	1 point	0 points
Conclusion: clear, compelling	2 points	1.5 points	1 point	0.5 points	0.5 points	0 points
Slide: overall quality & effort	4 points	3 points	2 points	1 point	0.5 points	0 points
Overall Score	Truly Exceptional 35 or more	Very Good 28 or more	Average 21 or more	Below Average 14 or more	Marginal 7 or more	Unacceptable 0 or more

Use the rubric to "grade yourself" to check that you have included all the required parts and have done them well!

LINKING-TO-LIFE PART C "DELIVERABLES"

Some pointers for your Project Report:

 Be sure you have all the items in the "Deliverables" Checklist in your report. USE THE ORGANIZATIONAL HEADINGS PROVIDED (to aid the graders!) You may add subtitles to "personalize" your report, e.g.:

> Title: *Too Many Catalogs, Too Few Trees* Purpose & Motivation: *Reducing my Footprint by Reducing Catalogs* Connection to Global Change: *Catalogs Contribute to Carbon Emissions* What I Did: *Researching My Choices* What I Learned: *Reducing Catalogs Saves <u>More</u> than Just Trees!* The Bottom Line: *"Catalog Choice" Gives <u>Me</u> a Choice*

- Be sure you EXPLAIN and DOCUMENT <u>where</u> and <u>how</u> you got your information and <u>what</u> you did, plus your "BOTTOM LINE" <u>conclusion</u>.
- All your sources and references should be listed in the REFERENCE LIST using a standard format (see posted directions)
- Addressing each of the HEADINGS sections is more important than the number of pages. Don't obsess over page #s, obsess over GOOD CONTENT and use <u>that</u> to determine your report's length (within reason)

Some pointers for your Project Report (cont.) . . .

Before submitting your FINAL REPORT, <u>double check it</u> to be sure you've addressed all the items spelled out in the GRADING RUBRIC that is now POSTED IN THE LTL PART C DROPBOX

Criteria	Truly Exceptional	Very Good	Average	Below Average	Unacceptble
Purpose & Motivation	5 points	4 points	3 points	2 points	0 points
explained	Purpose & motivation explained clearly, thoroughly, and in a compelling manner	Purpose & motivation explained clearly and adequately but could be more thorough	Purpose & motivation addressed adequately, but lack clarity and/or thoroughness	Purpose and/or motivation not fully addressed or explained	No purpose and/or motivation statement
GC Connection: topic(s) listed by name and #	4 points Course topic or topics related to project purpose listed by name and # and connection accurately stated	3 points Course topic or topics related to project purpose listed by name and #	2 points Course topic or topics listed by name and /or # but connection is unclear	1 point Course topic listed by connection but is inaccurate or not obvious	0 points No course topics or #'s listed or indicated
GC Connection: connection of topic to project explained	5 points Effectively, thoroughly, and accurately explains how the GC course topic(s) specifically connect(s) to the project purpose, including details and specifics.	4 points Accurately explains how the GC course topic(s) specifically connect(s) to the project purpose	3 points Explains how the GC course topic(s) specifically connect(s) to the project purpose but not clearly or with some in accuracies	2 points GC course topic(s) mentioned, but not explained well or at all.	0 points No explanation

(See Dropbox for entire LTL Part C REPORT Rubric & "GRADE YOURSELF!")

TOPIC # 14 CLIMATE CHANGE IMPACTS & CHOICES (cont.) MITIGATION & ADAPTATION

WRAP UP . . .

Class Notes pp 95

"A world civilization able to envision God and the afterlife, to embark on the colonization of space, will surely find the way to save the integrity of this magnificent planet and the life it harbors because quite simply

it's the right thing to do, and ennobling to our species."

-E. O. Wllson

MITIGATION

Intervention to reduce Anthropogenic Forcing on the climate system through:

(a) strategies to <u>reduce</u> GHG emissions:

(b) strategies to <u>enhance</u> GHG sinks:

planting trees

ADAPTATION

Adjustments made in response to (or anticipation of) CLIMATIC IMPACTS in

order to:

(a) Lessen or <u>reduce</u> harm:

Should this house be rebuilt?

(b) <u>take advantage</u> of beneficial opportunities:

MITIGATION VS ADAPTATION ?

We need <u>BOTH</u>!

p 95

Many MITIGATION SOLUTIONS described in ...

TOO HOT NOT TO HANDLE

NOT TO HANDL

Is it time to take SO ar energy seriously?

THE NEXT FRONTIER:

Engineering the Golden Age of Green

"Let a thousand flowers bloom".

BIOFUELS ELECTRIC Michael Opp Professor, G Professor, G Professor, G

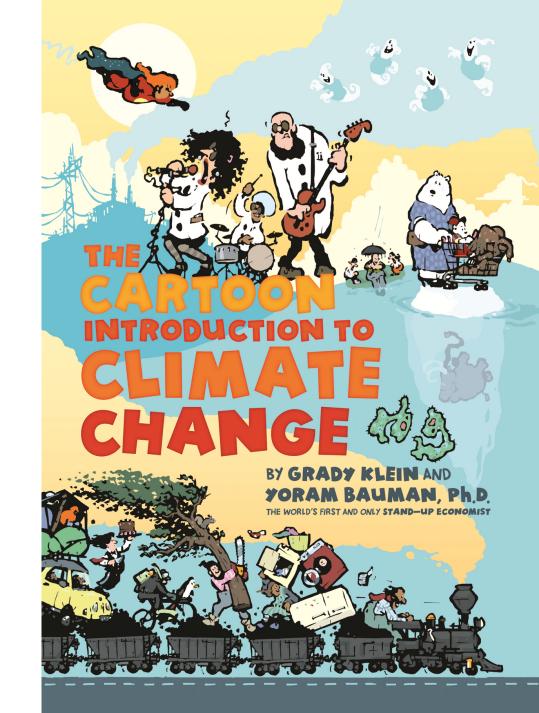
CARS

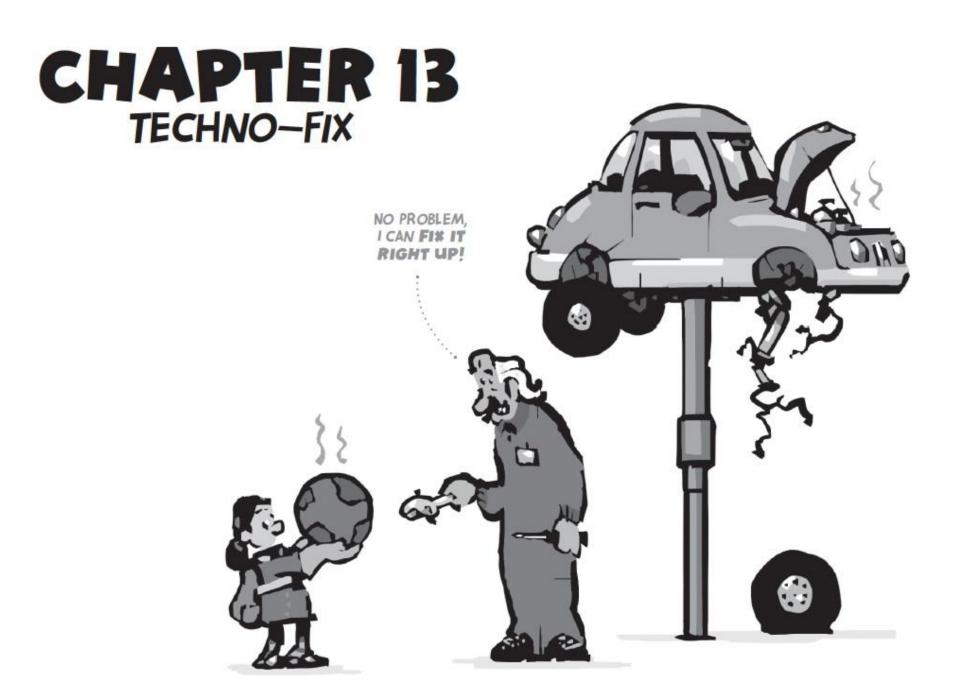
Michael Oppenheimer, Ph.D. Professor, Geosciences and International Alfairs Princeton University

SUSTAINABLE COMMUNITIES Portland, Oregon ex

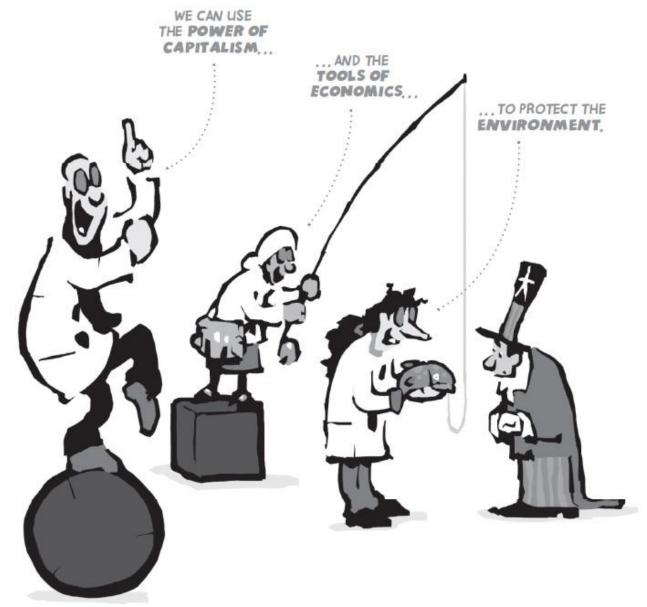
Portland, Oregon example . . . What about Tucson? Phoenix? Your home town?

... and other films


Then in class, Dr H went through several slides from this book . . . See RQ-9 when it is posted in D2L next week for the material covered.


This PPT material is provided for noncommercial education purposes only.

Please support the authors by buying *Cartoon Climate Change* (and/or *Cartoon Economics*) from your favorite bookstore. Comedy videos are at <u>standupeconomist.com</u>.


Please show this slide to identify the artwork and the artists.

© Yoram Bauman and Grady Klein

CHAPTER 14 PUTTING A PRICE ON CARBON

WE NEED TO GET BEYOND FOSSIL FUELS!

> OKAY, THERE'S DEFORESTATION, AND METHANE, AND SF6, AND...

CHAPTER 15 BEYOND FOSSIL FUELS

MITIGATION

Intervention to reduce Anthropogenic Forcing on the climate system through:

(a) strategies to <u>reduce</u> GHG emissions:

(b) strategies to <u>enhance</u> GHG sinks:

planting trees

ADAPTATION

Adjustments made in response to (or anticipation of) CLIMATIC IMPACTS in

order to:

(a) Lessen or <u>reduce</u> harm:

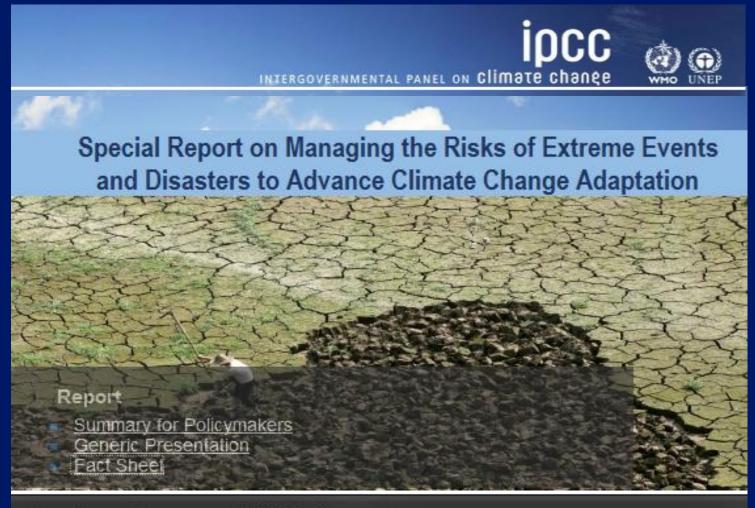
Should this house be rebuilt?

(b) <u>take advantage</u> of beneficial opportunities:

POSSIBLE PATHS OF FUTURE GLOBAL WARMING

Past observed	Estimated future	Estimated average
surface	temperature	temperature rise plus
temperature	trajectories	lowest and highest
 changes		

"This means that we will have no choice but to ADAPT to a change in climate"

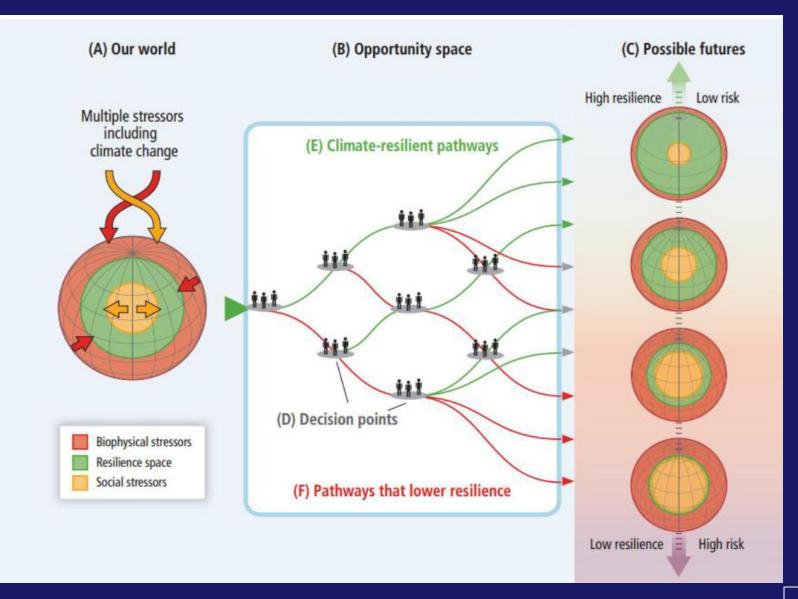

- even if our mitigation actions place us on a low emissions pathway or . . .
- even if emissions are stopped entirely (which would be impossible)

Lesson 4 Climate Science Basics Tutorial

Pacific Institute for Climate Solutions Knowledge. Insight. Action.

IPCC SPECIAL REPORT on ADAPTATION:

Changes in climate vary across regions


- Each region has unique vulnerabilities & exposure to hazards
- Effective adaptation & risk management must address BOTH exposure & vulnerability of a region

There are strategies that can help manage disaster risk now and also help improve people's livelihoods and well-being

The most effective strategies offer development benefits in the relatively near term and reduce vulnerability over the longer term

HUGE AMOUNTS OF "OPPORTUNITY SPACE" EXIST FOR ADAPTATION . . .

Finding Synergies between Adaptation and Mitigation

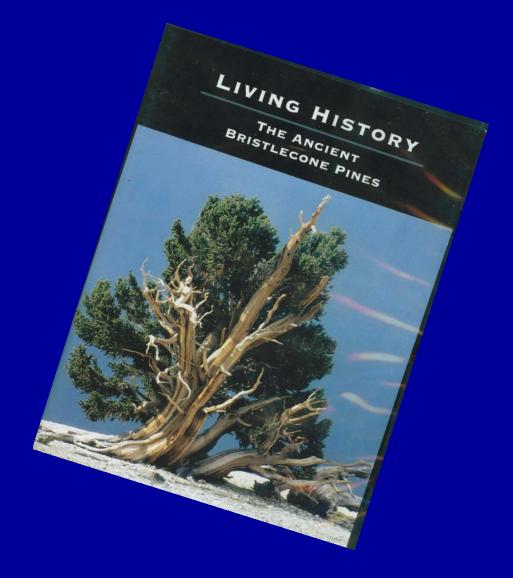
> Preparing for transformational change and weather and climate extremes

> > Managing risk in a complex.

nce

king

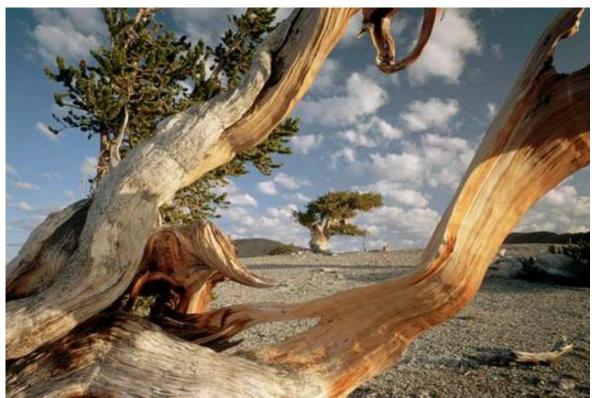
THE UNIVERSITY OF ARIZONA®


http://www.ccass.arizona.edu/

MITIGATION VS ADAPTATION ?

We need <u>BOTH</u>!

p 95

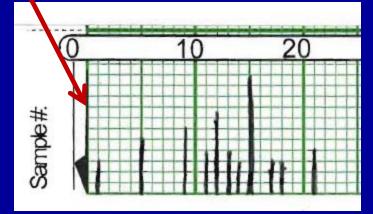

SHORT VIDEO BREAK:

And now . . .

G-6 DOING SCIENCE with TREE-RINGS

With the Amazing Bristlecone Pines!

OK, so we extract the tree-ring cores with an increment borer . . . THEN WHAT?


We compare one core to another and MATCH THE PATTERNS by lining up the rings of the really stressful years.

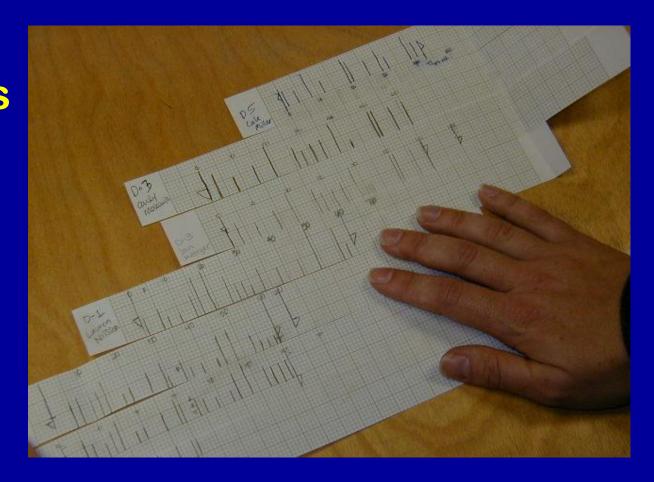
To do this we use . . .

SKELETON PLOTS!

= a graph-paper plot of the tree's most stressful years plotted for a sampled core:

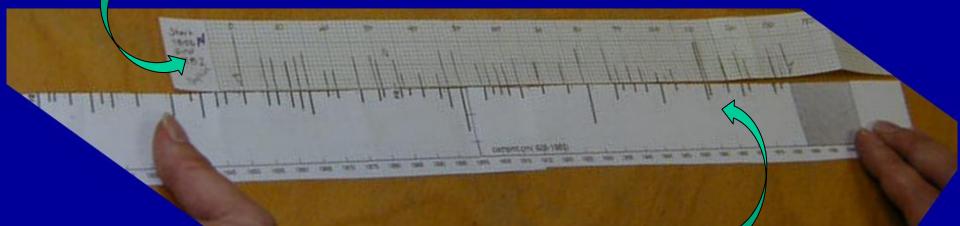
= The LONGEST LINES represent the most NARROW RINGS in the core

(only the narrow rings are plotted)


Pattern Matching: Narrow rings on skeleton plots can be MATCHED from one core to another:

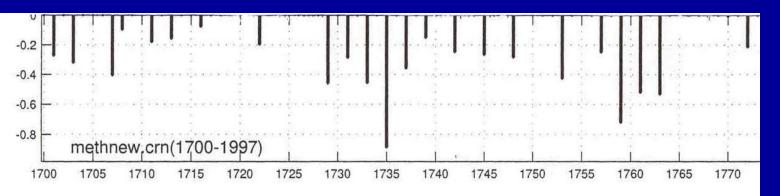
Skeleton Plot of Tree-Core A-3

Skeleton Plot of Plot of Tree-Core A-1

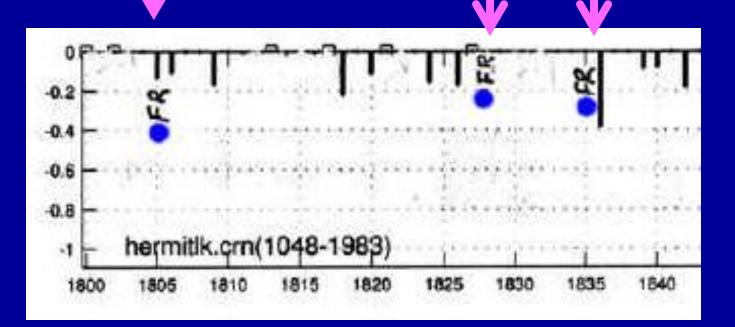

Multiple skeleton plots can then be combined to make a COMPOSITE **PLOT** of all cores from a site:

By doing this we can make a MASTER SKELETON PLOT for a site or region and add calendar dates ->

A site or region's <u>Master Skeleton Plot</u> is used to assign dates to newly collected and undated tree-ring samples

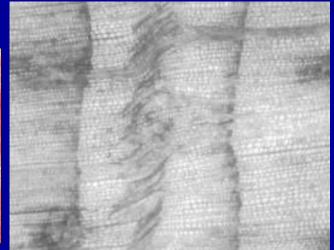

Skeleton Plot of undated core

Master Chronology Skeleton Plot


In today's assignment you will work with SKELETON PLOT MASTERS for 5 different tree-ring sites in western United States ->

On a MASTER we know the ACTUAL CALENDAR DATES for all the years with really narrow rings

also on the Skeleton Plot Masters you will find "FROST RING YEARS" marked!


FR = frost ring year

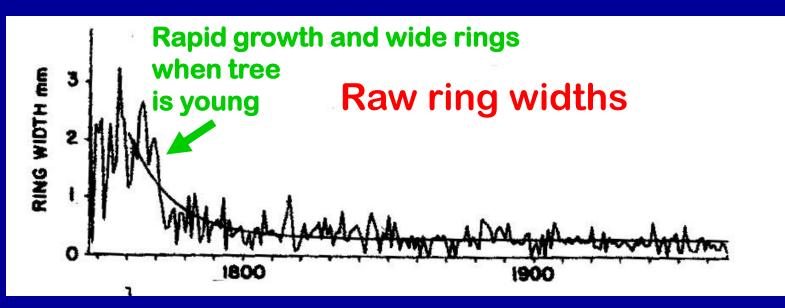
FROST RINGS

Permanent wood damage in cells, due to freezing & expansion of intercelluar water, can be useful for pattern matching &

crossdating!

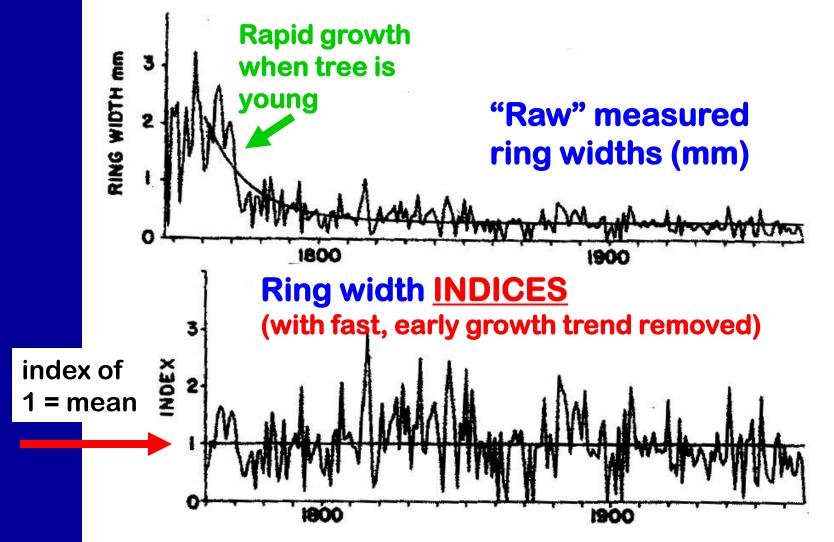
Produced by a severe freeze occurring DURING the tree's growing season

2 nights < - 5° C intervening day 0° C

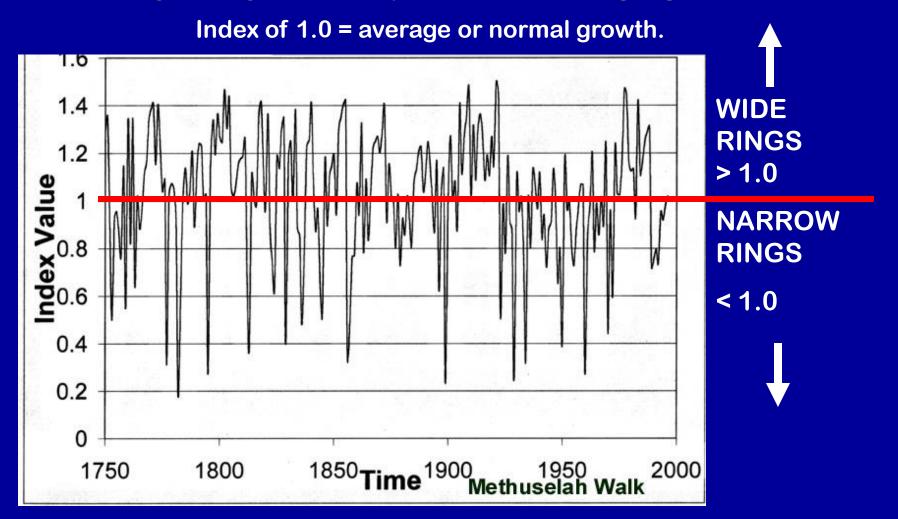

Bottom of p 100

Today you will also work with <u>another kind of graph:</u>

a TREE-RING WIDTH PLOT . . .



TREE-RING WIDTH PLOT = a time series plot of the ring widths in a tree for each year


Time Series Plot of Measured Ring Widths for each year's growth

TREE-RING WIDTH PLOT

RING WIDTH CHRONOLOGY in "INDEX" format index of 1.0 = chronology's mean width p 99

Ring-Width Indices for each site A Ring Width Index = a <u>departure</u> of growth for any one year compared to <u>average growth</u>.

G-6 The Bristlecone Pine (BCP) Activity pp 105-108

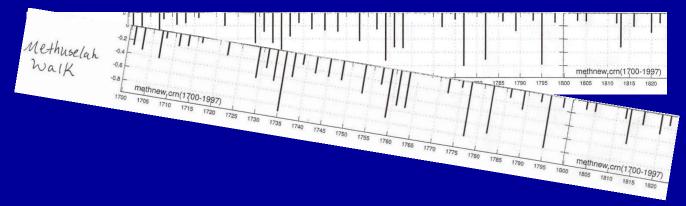
in the CLASS NOTES APPENDIX

Doing Science with Tree Rings . . .

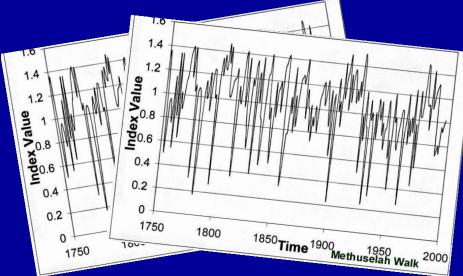
1. FORMULATE A QUESTION based on previous work, field observations, etc.

2. DEVELOP HYPOTHESES must be "testable" with data

3. COLLECT DATA

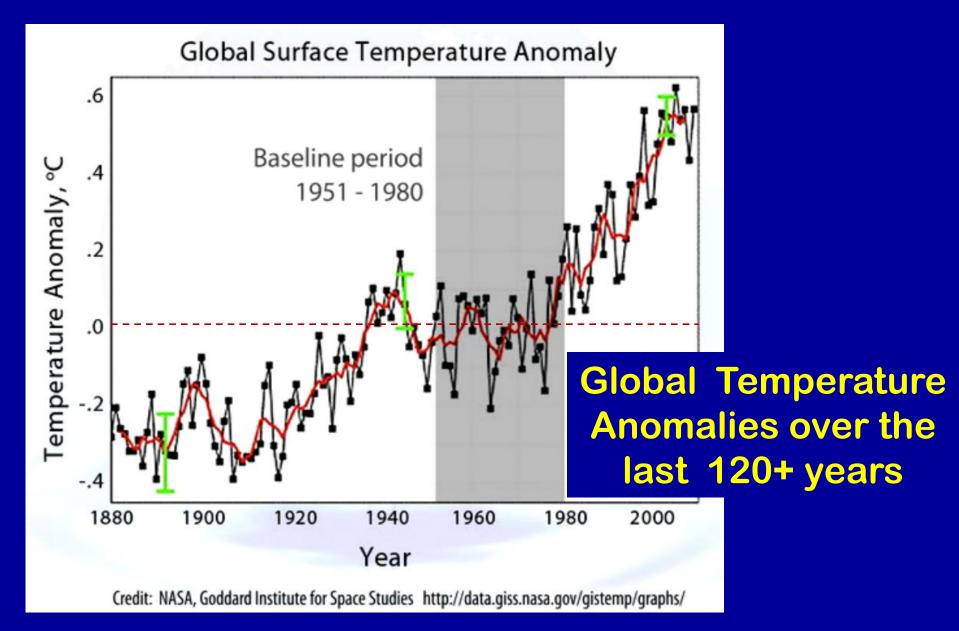

process, compile, analyze it

4. TEST HYPOTHESES

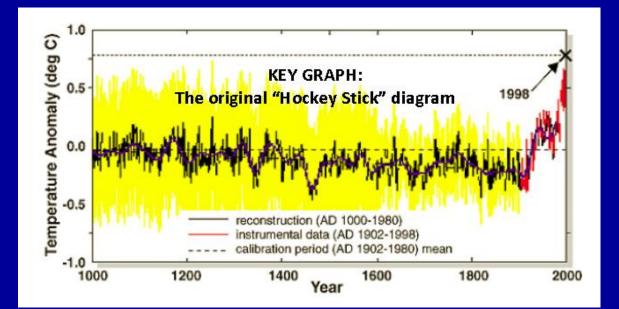

be open-minded but skeptical; may need to be open to "multiple working hypotheses"

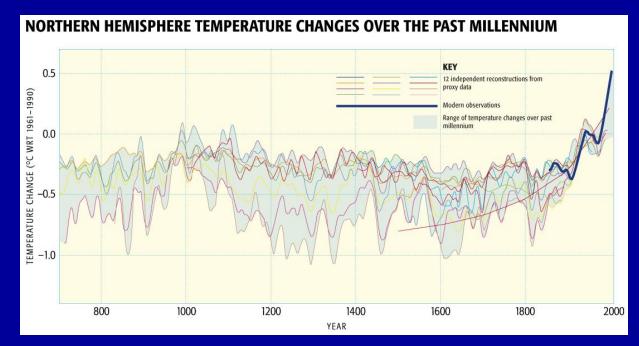
5. DRAW CONCLUSIONS

THE AVAILBLE DATA: 1) SKELETON PLOTS MASTER of each site

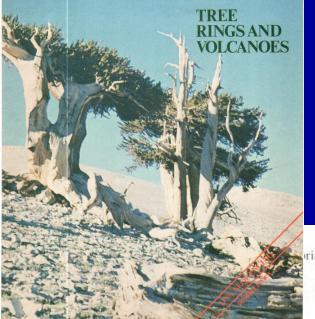

2) Ring Width "INDEX" PLOTS of each site

WHAT DO YOU NEED TO KNOW TO COMPLETE THE ASSIGNMENT?


To answer Q's about <u>possible causes</u> for variations in the BCP ring widths (e.g., global warming or cooling, etc.) we need to know the following:

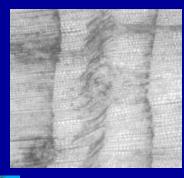

- What the graph of GLOBAL TEMPERATURE variations looks like over time (to link the growth to recent GLOBAL WARMING)
- Possible causes for FROST RINGS in BCP
- What else besides climate might enhance or suppress growth in the trees

(From the I-1 Climate Basics Tutorial)

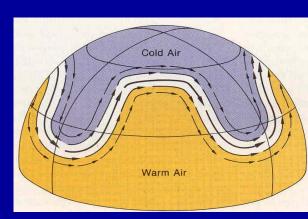

N. Hemisphere Temperature Anomalies over the last 1000+ years

Graphs from p 88 in CLASS NOTES & p 47 of Dire Predictions

Possible cause of FROST RINGS in Bristlecone Pine:


rinted from Nature, Vol. 307, No. 5946, pp. 121-126, 12 January, 1984 *Macmillan Journals Ltd., 1984*

Frost rings in trees as records of major volcanic eruptions


Valmore C. LaMarche Jr* & Katherine K. Hirschboeck*

* Laboratory of Tree-Ring Research and † Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA

New data about climatically-effective volcanic eruptions during the past several thousand years may be contained in frost-damage zones in the annual rings of trees. There is good agreement in the timing of frost events and recent eruptions, and the damage can be plausibly linked to climatic effects of stratospheric aerosol veils on hemispheric and global scales. The cataclysmic proto-historic eruption of Santorini (Thera), in the Aegean, is tentatively dated to 1628–26 BC from frost-ring evidence.

The VOLCANO- FROST RING CONNECTION:

SOME MAJOR VOLCANIC ERUPTIONS OF THE PAST 250 YEARS:

Laki (Iceland) 1783 El Chichon? (Mexico) 1809 Tambora (Indonesia) 1815 1835 **Cosiguina (Nicaragua)** Krakatau (Indonesia) 1883 1963 Agung (Indonesia) **El Chichon (Mexico)** 1982 1991 **Mt Pinatubo (Philippines)**

Global cooling can occur for up to 3 years after the eruption

THE ROLE OF CO₂ IN TREE GROWTH!

Photosynthesis: (Primary Production)	CO ₂ carbon dioxide	+ H ₂ O → water	CH ₂ O carbohydrate		O ₂ . exygen gas	
--	--------------------------------------	-------------------------------	-----------------------------------	--	-----------------------------------	--

REVIEW: p 83 in Class Notes

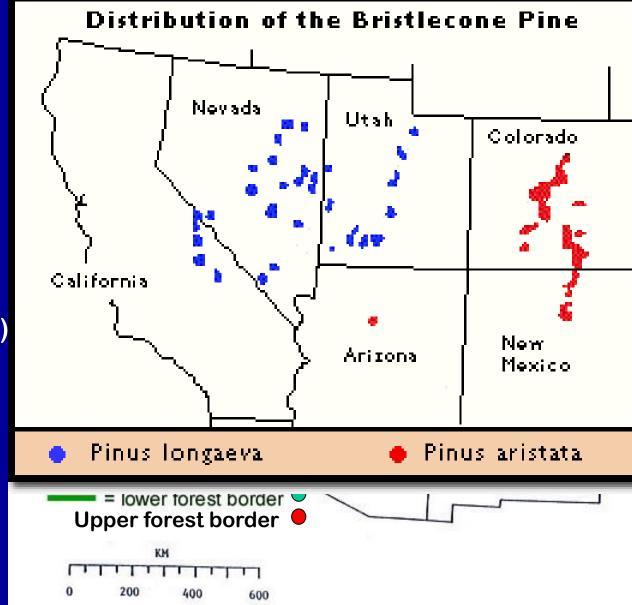
So here we go . . .

First, we'll visit the data collection sites.

Tour of the 5 Bristlecone Pine Sites

→ Key info is already filled in on the Table on p 105

OBSERVATION TABLE (p 106 of Class Notes)


VARIABLES (NOIB: A variable is samething that varies from site to site or	SITE-to-SITE COMPARISON TABLE				
from time to time at one or more sites)	Sheep Mt Core ID = C	Campito Mt Core ID = D	Methuselah Walk Core ID = B	Almagre Mt Core ID = E	Hermit Lake Core ID = A
Geographic Location	White Mountains near Bishop, California	White Mountains near Bishop, California	White Mountains near Bishop, California	Front Range of the Colorado Rockies	Front Range of the Colorado Rockies
Elevation	3475 m (~11,500 ft)	3400 m (~11,000 ft)	2805 m (~ 9200 ft)	3536 m (~11,600 ft)	3657 m (~ 12,000 ft)
Upper or Lower Forest Border?	upper	upper	lower	upper	upper
Moisture- or Temperature- sensitive?	temperature	temperature	moisture	temperature	temperature
Rock/ soil type	dolomite	sandstone	dolomite	granite	sandstone
	Complete :	the rest of the site-to-si	te observations (below)) based on our in-class	discussion
# of frost rings in entire record :					
Any differences in # of frost rings over time?					
Describe any trends in the time series of the ring width indices:					
Describe any pre- & post 1900 differences:					
Describe any other interesting things you noticed about any of the sites:					

TREE-RING SITE MAP

<u>All</u> are Bristlecone Pine sites <u>SITE NAME (abv)</u>

Sheep Mt (SHP) Campito Mt (CAM) Methuselah Walk (MWK) Almagre Mt (ALM) Hermit Lake (HER)

> Map is on p 105 in Class Notes

Upper & Lower Forest Border:

Temperaturesensitive and Precipitationsensitive Trees

> Take notes p 106 Table

SITE 1 (SHP) SHEEP MT, Inyo Range, California

- In the White Mountains near Bishop, California
- Elevation 3475 meters (~11,500 ft)
- Rock type dolomite

SHEEP MT

SHEEP MT

SITE 2 (CAM) CAMPITO Mt

- White Mts. Near Bishop California
- Elevation 3400 meters (~11,000 ft)
- Rock type sandstone

CAMPITO MT

CAMPITO MT

SITE 3 (MWK) METHUSELAH WALK

- In White Mts near Bishop California
- Elevation 2805 meters (~ 9,200 ft)
- Rock type Dolomite

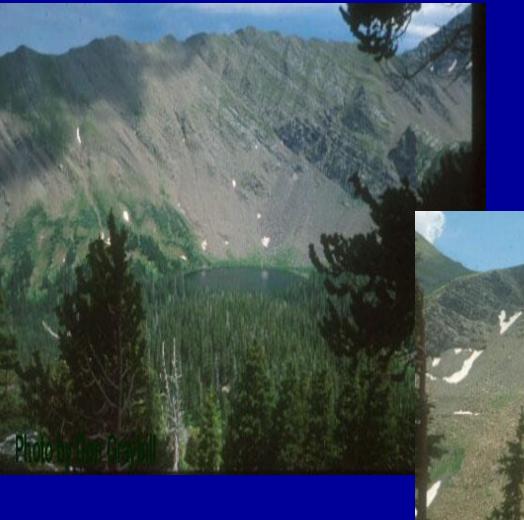
METHUSELAH WALK


SITE 4 (ALM) Almagre Mt

- located in the Front Range of the Colorado Rockies
- Elevation 3536 meters (~11,600 ft)
- Rock type granite

ALMAGRE MT

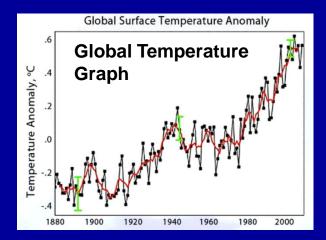
ALMAGRE MT



SITE 5 (HER) HERMIT LAKE

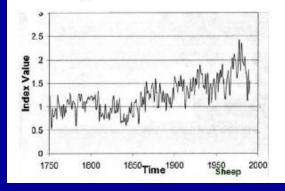
- located in the Front Range of the Colorado Rockies
- Elevation 3657 meters (~ 12,000 ft)
- Rock type sandstone

HERMIT LAKE



HERMIT LAKE

THE DATA:



Skeleton Plot Masters:

(Some of the Skeleton Plots have **FR** for **FROST RING** marked in certain years.)

Ring Width Indices Plots:

SOME MAJOR VOLCANIC ERUPTIONS OF THE PAST 250 YEARS:

Laki (Iceland)	1783
El Chichon? (Mexico)	1809
Tambora (Indonesia)	1815
Cosiguina (Nicaragua)	1835
Krakatau (Indonesia)	1883
Agung (Indonesia)	1963
El Chichon (Mexico)	1982
Mt Pinatubo (Philippines	1991

STEP #1 FILL IN THE REST OF THE TABLE:

One student (or a pair of students) works on each site ...

Skeleton_ Plots

Ring width Indices

VARIABLES (NO IE : A variable is something that varies from site to site or	SITE-to-SITE COMPARISON TABLE					
from time to time at one or more sites)	Sheep Mt Core ID = C	Campito Mt Core ID = D	Methuselah Walk Core ID = B	Almagre Mt Core ID = E	Hermit Lake Core ID = A	
Geographic Location	White Mountains near Bishop, California	White Mountains near Bishop, California	White Mountains near Bishop, California	Front Range of the Colorado Rockies	Front Range of the Colorado Rockies	
Elevation	3475 m (~11,500 ft)	3400 m (~11,000 ft)	2805 m (~ 9200 ft)	3536 m (~11,600 ft)	3657 m (~ 12,000 ft)	
Upper or Lower Forest Border?	upper	upper	lower	upper	upper	
Moisture- or Temperature- sensitive?	temperature	temperature	moisture	temperature	temperature	
Rock/ soil type	dolomite	sandstone	dolomite	granite	sandstone	
	Complete	the rest of the site-to-si	te observations (below)	based on our in-class	discussion	
# of frost rings in entire record :						
Any differences in # of frost rings over time?						
Describe any trends in the time series of the ring width indices:						
Describe any pre- & post 1900 differences:						
Describe any other interesting things you noticed about any of the sites:						

Then "swap data" so everyone has the table filled out!

STEP #2 ANALYZE & DISCUSS SITE-TO-SITE COMPARISONS

(Based on your group's completed table)

VARIABLES @VOIE: A variable is something that varies from site to site or	SITE-to-SITE COMPARISON TABLE					
from time to time of one or more sites)	Sheep Mt Core ID = C	Camp ito Mt Core ID = D	Methuselah Walk Core ID = B	Almagre Mt Core ID = E	Hermit Lake Core ID = A	
Geographic Location	White Mountains near Bishop, California	White Mountains near Bishop, California	White Mountains near Bishop, California	Front Range of the Colorado Rockies	Front Range of the Colorado Rockies	
Elevation	3475 m (~11,500 ft)	3400 m (~11,000 ft)	2805 m (~ 9200 ft)	3536 m (~11,600 ft)	3657 m (~ 12,000 ft)	
Upper or Lower Forest Border?	upper	upper	lower	upper	upper	
Moisture- or Temperature- sensitive?	temperature	temperature	moisture	temperature	temperature	
Rock/ soil type	dolomite	sandstone	dolomite	granite	sandstone	
	Complete	the rest of the site-to-si	ite observations (below)	based on our in-class	discussion	
# of frost rings in entire record :						
Any differences in # of frost rings over time?						
Describe any trends in the time series of the ring will th indices:						
Describe any pre- & post 1900 differences:						
Describe any other interesting things you noticed about any of the sites:						

WHAT DO YOU NOTICE??

Which sites are similar, which are different? What could be causing the similarities and differences? Are there any TRENDS? What could be causing them? Etc., etc.

STEP # 3 HYPOTHESIS TESTING pp 107 & 108

A hypothesis must be stated in a way that can be tested by the available data.

Hypothesis #1 – Is stated for you → test it!

Hypothesis #2 – Needs more data to test it What kind of data?

Hypothesis #3 – You will construct it ... on FROST RINGS!

GO CATS! Beat the Ducks

AGAIN!!!!